GPU Acceleration of Head-Gordon-Pople Algorithm
The electron repulsion integral (ERI) is a fundamental quantity in computational quantum chemistry, derived from the Coulomb interaction between pairs of electrons in a molecule. ERIs are among the most computationally intensive tasks in the field, due to their inherent complexity and the large numb...
Saved in:
Published in | International Symposium on Computing and Networking (Online) pp. 115 - 124 |
---|---|
Main Authors | , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
26.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 2379-1896 |
DOI | 10.1109/CANDAR64496.2024.00021 |
Cover
Loading…
Abstract | The electron repulsion integral (ERI) is a fundamental quantity in computational quantum chemistry, derived from the Coulomb interaction between pairs of electrons in a molecule. ERIs are among the most computationally intensive tasks in the field, due to their inherent complexity and the large number of calculations required. The Head-Gordon-Pople (HGP) algorithm is a widely recognized method for efficiently calculating ERIs. This study presents an optimized GPU-based parallel computation approach tailored for the HGP algorithm. A key innovation of this research is introducing a new thread assignment strategy that leverages parallel thread groups, called warps, which execute the same instruction concurrently. This strategy significantly reduces the use of atomicAdd instructions, which handle exclusive addition operations to GPU device memory. Our theoretical analysis shows that the proposed method can reduce atomicAdd usage by up to 1/810. Furthermore, experimental results demonstrate that the proposed GPU implementation on an NVIDIA A100 GPU achieves up to a 2.19-fold speedup compared to a simpler thread assignment method and over a 1,900-fold speedup compared to a sequential implementation on an AMD EPYC 7702 CPU. |
---|---|
AbstractList | The electron repulsion integral (ERI) is a fundamental quantity in computational quantum chemistry, derived from the Coulomb interaction between pairs of electrons in a molecule. ERIs are among the most computationally intensive tasks in the field, due to their inherent complexity and the large number of calculations required. The Head-Gordon-Pople (HGP) algorithm is a widely recognized method for efficiently calculating ERIs. This study presents an optimized GPU-based parallel computation approach tailored for the HGP algorithm. A key innovation of this research is introducing a new thread assignment strategy that leverages parallel thread groups, called warps, which execute the same instruction concurrently. This strategy significantly reduces the use of atomicAdd instructions, which handle exclusive addition operations to GPU device memory. Our theoretical analysis shows that the proposed method can reduce atomicAdd usage by up to 1/810. Furthermore, experimental results demonstrate that the proposed GPU implementation on an NVIDIA A100 GPU achieves up to a 2.19-fold speedup compared to a simpler thread assignment method and over a 1,900-fold speedup compared to a sequential implementation on an AMD EPYC 7702 CPU. |
Author | Yokogawa, Nobuya Tsuji, Satoki Kasagi, Akihiko Ito, Yasuaki Nakano, Koji Suzuki, Kanta Fujii, Haruto |
Author_xml | – sequence: 1 givenname: Kanta surname: Suzuki fullname: Suzuki, Kanta organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527 – sequence: 2 givenname: Yasuaki surname: Ito fullname: Ito, Yasuaki organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527 – sequence: 3 givenname: Haruto surname: Fujii fullname: Fujii, Haruto organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527 – sequence: 4 givenname: Nobuya surname: Yokogawa fullname: Yokogawa, Nobuya organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527 – sequence: 5 givenname: Satoki surname: Tsuji fullname: Tsuji, Satoki organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527 – sequence: 6 givenname: Koji surname: Nakano fullname: Nakano, Koji organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527 – sequence: 7 givenname: Akihiko surname: Kasagi fullname: Kasagi, Akihiko organization: Fujitsu Limited,Computing Laboratory,Kawasaki,Japan,211-8588 |
BookMark | eNotzM1Kw0AUQOFRFKw1byCSF0h679z5ySxD1FQoWsSuyzRzo5E0U5JsfHsLuvo2h3MrroY4sBAPCDkiuFVVvj6W70YpZ3IJUuUAIPFCJM66ggi1LMjIS7GQZF2GhTM3Ipmm73NGEhQYWohVvd2lZdNwz6OfuziksU3X7ENWxzHEIdvGU89p2X_GsZu_jnfiuvX9xMm_S7F7fvqo1tnmrX6pyk3WoTVzZtFQc3Ct9kbbgtiCahW2mloL0ilGVIEp6IDKOnsIDYAOhoPHMzoEWor7v2_HzPvT2B39-LNHKLAgifQLYZpFwA |
CODEN | IEEPAD |
ContentType | Conference Proceeding |
DBID | 6IE 6IL CBEJK RIE RIL |
DOI | 10.1109/CANDAR64496.2024.00021 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore Digital Library IEEE Proceedings Order Plans (POP All) 1998-Present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISBN | 9798331528362 |
EISSN | 2379-1896 |
EndPage | 124 |
ExternalDocumentID | 10818321 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IL 6IN AAWTH ABLEC ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK OCL RIE RIL |
ID | FETCH-LOGICAL-i176t-7163cb9f5a65783e704f41f53f70294e114de3d5d14797bdc005d6eda15d65dd3 |
IEDL.DBID | RIE |
IngestDate | Wed Jan 08 06:10:43 EST 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i176t-7163cb9f5a65783e704f41f53f70294e114de3d5d14797bdc005d6eda15d65dd3 |
PageCount | 10 |
ParticipantIDs | ieee_primary_10818321 |
PublicationCentury | 2000 |
PublicationDate | 2024-Nov.-26 |
PublicationDateYYYYMMDD | 2024-11-26 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-Nov.-26 day: 26 |
PublicationDecade | 2020 |
PublicationTitle | International Symposium on Computing and Networking (Online) |
PublicationTitleAbbrev | CANDAR |
PublicationYear | 2024 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0003204063 |
Score | 1.9007031 |
Snippet | The electron repulsion integral (ERI) is a fundamental quantity in computational quantum chemistry, derived from the Coulomb interaction between pairs of... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 115 |
SubjectTerms | Complexity theory computational quantum chemistry CUDA Degradation electron repulsion integrals Electrons GPU Graphics processing units Head-Gordon-Pople algorithm Instruction sets Parallel processing Quantum chemistry Registers Technological innovation |
Title | GPU Acceleration of Head-Gordon-Pople Algorithm |
URI | https://ieeexplore.ieee.org/document/10818321 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J0_1UfFNDl63zT6yyR5DtS2CpYiF3kp2Z6NFTaSkF3-9s0mqIgieEnLJY-bj228z3wwh10oDV8ZoajlTFFfgQI2LFM0wPXKQgmvjzcn3UzWZy7tFtGjN6rUXxjlXF5-5vj-t_-VDaTd-qwwRnvgMRLGzi8qtMWt9bagIjvmoROsCZqEeDNPpTfqAhK99LQL3bbJD3xP0xxiVmkVGXTLd3r8pHnnpbyrTtx-_WjP--wH3Se_bsBfMvqjogOy44pB0txMbghbAR2Qwns2D1FrkmibyQZkHEwwzHaMILQs68_XkQfr6VK5X1fNbj8xHt4_DCW1HJtAVi1VFUf0Ia3QeZQqhKFwcylyyPBJ5HHItHaofcAIiYDLWsQGLIATlIGN4iADEMekUZeFOSJBHuHQBSEBaI5NIJ8Di0GnEbJZw5tQp6fkPsHxvumIst-9-9sf1c7Lng-B9fFxdkE613rhLJPTKXNWB_AQzX51d |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDDCVRxFvMrC6jRPbiceo0AZoowq1UrcqfgQqIEFVuvDrOSdpQUhITI48Ob779Pns--4QuuFCe1xKgZVHOIYTuMbSMI5TcI9MU98T0oqTRwmPp_RhxmaNWL3SwhhjquQz07Gf1Vu-LtTKXpUBwkPrgRDs7ADxM1LLtTZXKr4HHsn9RgdMXNHtRclt9ASUL2w2gmcLZbu2KuiPRioVj_RbKFmvoE4fee2sStlRn7-KM_57ifuo_S3Zc8YbMjpAWyY_RK11zwangfAR6g7GUydSCtimtr1TZE4MhsYDCEOLHI9tRrkTvT0Xy0X58t5G0_7dpBfjpmkCXpCAlxjiH19JkbGUAxh9E7g0oyRjfha4nqAG4h9tfM00oYEIpFYAQ82NTgkMTGv_GG3nRW5OkJMxOLxoHWqqJA2ZCDUJXCMAtWnoEcNPUdtuwPyjrosxX__72R_z12g3noyG8-F98niO9qxBrKrP4xdou1yuzCXQeymvKqN-AZ9coKY |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Computing+and+Networking+%28Online%29&rft.atitle=GPU+Acceleration+of+Head-Gordon-Pople+Algorithm&rft.au=Suzuki%2C+Kanta&rft.au=Ito%2C+Yasuaki&rft.au=Fujii%2C+Haruto&rft.au=Yokogawa%2C+Nobuya&rft.date=2024-11-26&rft.pub=IEEE&rft.eissn=2379-1896&rft.spage=115&rft.epage=124&rft_id=info:doi/10.1109%2FCANDAR64496.2024.00021&rft.externalDocID=10818321 |