GPU Acceleration of Head-Gordon-Pople Algorithm

The electron repulsion integral (ERI) is a fundamental quantity in computational quantum chemistry, derived from the Coulomb interaction between pairs of electrons in a molecule. ERIs are among the most computationally intensive tasks in the field, due to their inherent complexity and the large numb...

Full description

Saved in:
Bibliographic Details
Published inInternational Symposium on Computing and Networking (Online) pp. 115 - 124
Main Authors Suzuki, Kanta, Ito, Yasuaki, Fujii, Haruto, Yokogawa, Nobuya, Tsuji, Satoki, Nakano, Koji, Kasagi, Akihiko
Format Conference Proceeding
LanguageEnglish
Published IEEE 26.11.2024
Subjects
Online AccessGet full text
ISSN2379-1896
DOI10.1109/CANDAR64496.2024.00021

Cover

Loading…
Abstract The electron repulsion integral (ERI) is a fundamental quantity in computational quantum chemistry, derived from the Coulomb interaction between pairs of electrons in a molecule. ERIs are among the most computationally intensive tasks in the field, due to their inherent complexity and the large number of calculations required. The Head-Gordon-Pople (HGP) algorithm is a widely recognized method for efficiently calculating ERIs. This study presents an optimized GPU-based parallel computation approach tailored for the HGP algorithm. A key innovation of this research is introducing a new thread assignment strategy that leverages parallel thread groups, called warps, which execute the same instruction concurrently. This strategy significantly reduces the use of atomicAdd instructions, which handle exclusive addition operations to GPU device memory. Our theoretical analysis shows that the proposed method can reduce atomicAdd usage by up to 1/810. Furthermore, experimental results demonstrate that the proposed GPU implementation on an NVIDIA A100 GPU achieves up to a 2.19-fold speedup compared to a simpler thread assignment method and over a 1,900-fold speedup compared to a sequential implementation on an AMD EPYC 7702 CPU.
AbstractList The electron repulsion integral (ERI) is a fundamental quantity in computational quantum chemistry, derived from the Coulomb interaction between pairs of electrons in a molecule. ERIs are among the most computationally intensive tasks in the field, due to their inherent complexity and the large number of calculations required. The Head-Gordon-Pople (HGP) algorithm is a widely recognized method for efficiently calculating ERIs. This study presents an optimized GPU-based parallel computation approach tailored for the HGP algorithm. A key innovation of this research is introducing a new thread assignment strategy that leverages parallel thread groups, called warps, which execute the same instruction concurrently. This strategy significantly reduces the use of atomicAdd instructions, which handle exclusive addition operations to GPU device memory. Our theoretical analysis shows that the proposed method can reduce atomicAdd usage by up to 1/810. Furthermore, experimental results demonstrate that the proposed GPU implementation on an NVIDIA A100 GPU achieves up to a 2.19-fold speedup compared to a simpler thread assignment method and over a 1,900-fold speedup compared to a sequential implementation on an AMD EPYC 7702 CPU.
Author Yokogawa, Nobuya
Tsuji, Satoki
Kasagi, Akihiko
Ito, Yasuaki
Nakano, Koji
Suzuki, Kanta
Fujii, Haruto
Author_xml – sequence: 1
  givenname: Kanta
  surname: Suzuki
  fullname: Suzuki, Kanta
  organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527
– sequence: 2
  givenname: Yasuaki
  surname: Ito
  fullname: Ito, Yasuaki
  organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527
– sequence: 3
  givenname: Haruto
  surname: Fujii
  fullname: Fujii, Haruto
  organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527
– sequence: 4
  givenname: Nobuya
  surname: Yokogawa
  fullname: Yokogawa, Nobuya
  organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527
– sequence: 5
  givenname: Satoki
  surname: Tsuji
  fullname: Tsuji, Satoki
  organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527
– sequence: 6
  givenname: Koji
  surname: Nakano
  fullname: Nakano, Koji
  organization: Hiroshima University,Graduate School of Advanced Science and Technology,Higashi-Hiroshima,Japan,739-8527
– sequence: 7
  givenname: Akihiko
  surname: Kasagi
  fullname: Kasagi, Akihiko
  organization: Fujitsu Limited,Computing Laboratory,Kawasaki,Japan,211-8588
BookMark eNotzM1Kw0AUQOFRFKw1byCSF0h679z5ySxD1FQoWsSuyzRzo5E0U5JsfHsLuvo2h3MrroY4sBAPCDkiuFVVvj6W70YpZ3IJUuUAIPFCJM66ggi1LMjIS7GQZF2GhTM3Ipmm73NGEhQYWohVvd2lZdNwz6OfuziksU3X7ENWxzHEIdvGU89p2X_GsZu_jnfiuvX9xMm_S7F7fvqo1tnmrX6pyk3WoTVzZtFQc3Ct9kbbgtiCahW2mloL0ilGVIEp6IDKOnsIDYAOhoPHMzoEWor7v2_HzPvT2B39-LNHKLAgifQLYZpFwA
CODEN IEEPAD
ContentType Conference Proceeding
DBID 6IE
6IL
CBEJK
RIE
RIL
DOI 10.1109/CANDAR64496.2024.00021
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore Digital Library
IEEE Proceedings Order Plans (POP All) 1998-Present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9798331528362
EISSN 2379-1896
EndPage 124
ExternalDocumentID 10818321
Genre orig-research
GroupedDBID 6IE
6IF
6IL
6IN
AAWTH
ABLEC
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
OCL
RIE
RIL
ID FETCH-LOGICAL-i176t-7163cb9f5a65783e704f41f53f70294e114de3d5d14797bdc005d6eda15d65dd3
IEDL.DBID RIE
IngestDate Wed Jan 08 06:10:43 EST 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i176t-7163cb9f5a65783e704f41f53f70294e114de3d5d14797bdc005d6eda15d65dd3
PageCount 10
ParticipantIDs ieee_primary_10818321
PublicationCentury 2000
PublicationDate 2024-Nov.-26
PublicationDateYYYYMMDD 2024-11-26
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-Nov.-26
  day: 26
PublicationDecade 2020
PublicationTitle International Symposium on Computing and Networking (Online)
PublicationTitleAbbrev CANDAR
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0003204063
Score 1.9007031
Snippet The electron repulsion integral (ERI) is a fundamental quantity in computational quantum chemistry, derived from the Coulomb interaction between pairs of...
SourceID ieee
SourceType Publisher
StartPage 115
SubjectTerms Complexity theory
computational quantum chemistry
CUDA
Degradation
electron repulsion integrals
Electrons
GPU
Graphics processing units
Head-Gordon-Pople algorithm
Instruction sets
Parallel processing
Quantum chemistry
Registers
Technological innovation
Title GPU Acceleration of Head-Gordon-Pople Algorithm
URI https://ieeexplore.ieee.org/document/10818321
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF60J0_1UfFNDl63zT6yyR5DtS2CpYiF3kp2Z6NFTaSkF3-9s0mqIgieEnLJY-bj228z3wwh10oDV8ZoajlTFFfgQI2LFM0wPXKQgmvjzcn3UzWZy7tFtGjN6rUXxjlXF5-5vj-t_-VDaTd-qwwRnvgMRLGzi8qtMWt9bagIjvmoROsCZqEeDNPpTfqAhK99LQL3bbJD3xP0xxiVmkVGXTLd3r8pHnnpbyrTtx-_WjP--wH3Se_bsBfMvqjogOy44pB0txMbghbAR2Qwns2D1FrkmibyQZkHEwwzHaMILQs68_XkQfr6VK5X1fNbj8xHt4_DCW1HJtAVi1VFUf0Ia3QeZQqhKFwcylyyPBJ5HHItHaofcAIiYDLWsQGLIATlIGN4iADEMekUZeFOSJBHuHQBSEBaI5NIJ8Di0GnEbJZw5tQp6fkPsHxvumIst-9-9sf1c7Lng-B9fFxdkE613rhLJPTKXNWB_AQzX51d
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELYQDDCVRxFvMrC6jRPbiceo0AZoowq1UrcqfgQqIEFVuvDrOSdpQUhITI48Ob779Pns--4QuuFCe1xKgZVHOIYTuMbSMI5TcI9MU98T0oqTRwmPp_RhxmaNWL3SwhhjquQz07Gf1Vu-LtTKXpUBwkPrgRDs7ADxM1LLtTZXKr4HHsn9RgdMXNHtRclt9ASUL2w2gmcLZbu2KuiPRioVj_RbKFmvoE4fee2sStlRn7-KM_57ifuo_S3Zc8YbMjpAWyY_RK11zwangfAR6g7GUydSCtimtr1TZE4MhsYDCEOLHI9tRrkTvT0Xy0X58t5G0_7dpBfjpmkCXpCAlxjiH19JkbGUAxh9E7g0oyRjfha4nqAG4h9tfM00oYEIpFYAQ82NTgkMTGv_GG3nRW5OkJMxOLxoHWqqJA2ZCDUJXCMAtWnoEcNPUdtuwPyjrosxX__72R_z12g3noyG8-F98niO9qxBrKrP4xdou1yuzCXQeymvKqN-AZ9coKY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=International+Symposium+on+Computing+and+Networking+%28Online%29&rft.atitle=GPU+Acceleration+of+Head-Gordon-Pople+Algorithm&rft.au=Suzuki%2C+Kanta&rft.au=Ito%2C+Yasuaki&rft.au=Fujii%2C+Haruto&rft.au=Yokogawa%2C+Nobuya&rft.date=2024-11-26&rft.pub=IEEE&rft.eissn=2379-1896&rft.spage=115&rft.epage=124&rft_id=info:doi/10.1109%2FCANDAR64496.2024.00021&rft.externalDocID=10818321