Appearance modeling for tracking in multiple non-overlapping cameras

When viewed from a system of multiple cameras with non-overlapping fields of view, the appearance of an object in one camera view is usually very different from its appearance in another camera view due to the differences in illumination, pose and camera parameters. In order to handle the change in...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 26 - 33 vol. 2
Main Authors Javed, O., Shafique, K., Shah, M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:When viewed from a system of multiple cameras with non-overlapping fields of view, the appearance of an object in one camera view is usually very different from its appearance in another camera view due to the differences in illumination, pose and camera parameters. In order to handle the change in observed colors of an object as it moves from one camera to another, we show that all brightness transfer functions from a given camera to another camera lie in a low dimensional subspace and demonstrate that this subspace can be used to compute appearance similarity. In the proposed approach, the system learns the subspace of inter-camera brightness transfer functions in a training phase during which object correspondences are assumed to be known. Once the training is complete, correspondences are assigned using the maximum a posteriori (MAP) estimation framework using both location and appearance cues. We evaluate the proposed method under several real world scenarios obtaining encouraging results.
ISBN:0769523722
9780769523729
ISSN:1063-6919
1063-6919
DOI:10.1109/CVPR.2005.71