DWT-Based Shot Boundary Detection Using Support Vector Machine
Video shot detection is an important contemporary problem since it is the first step toward automatic indexing, content based video retrieval and many other different applications. A novel shot boundary detection using wavelet and Support Vector Machine is proposed in this paper. Shot boundary detec...
Saved in:
Published in | 2009 Fifth International Conference on Information Assurance and Security Vol. 1; pp. 435 - 438 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.08.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Video shot detection is an important contemporary problem since it is the first step toward automatic indexing, content based video retrieval and many other different applications. A novel shot boundary detection using wavelet and Support Vector Machine is proposed in this paper. Shot boundary detection algorithms work by extracting the color and the edge in different direction from wavelet transition coefficients. A multi-class support vector machine (SVM) classifier is used to classify the video shot into three categories: cut transition(CT), gradual transition(GT) and normal sequences (NF). To enhance the robustness of the algorithm, we form the feature vector from all frames within a temporal window. Numerical experiments using a variety of videos demonstrate that our method is capable of accurately detecting and discriminating shot transitions in videos with different characteristics. |
---|---|
ISBN: | 0769537448 9780769537443 |
DOI: | 10.1109/IAS.2009.16 |