A framework of 2D Fisher discriminant analysis: application to face recognition with small number of training samples
A novel framework called 2D Fisher discriminant analysis (2D-FDA) is proposed to deal with the small sample size (SSS) problem in conventional one-dimensional linear discriminant analysis (1D-LDA). Different from the 1D-LDA based approaches, 2D-FDA is based on 2D image matrices rather than column ve...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 1083 - 1088 vol. 2 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A novel framework called 2D Fisher discriminant analysis (2D-FDA) is proposed to deal with the small sample size (SSS) problem in conventional one-dimensional linear discriminant analysis (1D-LDA). Different from the 1D-LDA based approaches, 2D-FDA is based on 2D image matrices rather than column vectors so the image matrix does not need to be transformed into a long vector before feature extraction. The advantage arising in this way is that the SSS problem does not exist any more because the between-class and within-class scatter matrices constructed in 2D-FDA are both of full-rank. This framework contains unilateral and bilateral 2D-FDA. It is applied to face recognition where only few training images exist for each subject. Both the unilateral and bilateral 2D-FDA achieve excellent performance on two public databases: ORL database and Yale face database B. |
---|---|
ISBN: | 0769523722 9780769523729 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2005.30 |