Spatiograms versus histograms for region-based tracking
We introduce the concept of a spatiogram, which is a generalization of a histogram that includes potentially higher order moments. A histogram is a zeroth-order spatiogram, while second-order spatiograms contain spatial means and covariances for each histogram bin. This spatial information still all...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 1158 - 1163 vol. 2 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We introduce the concept of a spatiogram, which is a generalization of a histogram that includes potentially higher order moments. A histogram is a zeroth-order spatiogram, while second-order spatiograms contain spatial means and covariances for each histogram bin. This spatial information still allows quite general transformations, as in a histogram, but captures a richer description of the target to increase robustness in tracking. We show how to use spatiograms in kernel-based trackers, deriving a mean shift procedure in which individual pixels vote not only for the amount of shift but also for its direction. Experiments show improved tracking results compared with histograms, using both mean shift and exhaustive local search. |
---|---|
ISBN: | 0769523722 9780769523729 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2005.330 |