Face recognition based on convolution neural network
In this paper, a face recognition method based on Convolution Neural Network (CNN) is presented. This network consists of three convolution layers, two pooling layers, two full-connected layers and one Softmax regression layer. Stochastic gradient descent algorithm is used to train the feature extra...
Saved in:
Published in | Chinese Control Conference pp. 4077 - 4081 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
Technical Committee on Control Theory, CAA
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a face recognition method based on Convolution Neural Network (CNN) is presented. This network consists of three convolution layers, two pooling layers, two full-connected layers and one Softmax regression layer. Stochastic gradient descent algorithm is used to train the feature extractor and the classifier, which can extract the facial features and classify them automatically. The Dropout method is used to solve the over-fitting problem. The Convolution Architecture For Feature Extraction framework (Caffe) is used during the training and testing process. The face recognition rate of the ORL face database and AR face database based on this network is 99.82% and 99.78%. |
---|---|
ISSN: | 1934-1768 |
DOI: | 10.23919/ChiCC.2017.8027997 |