Power-CAD: A novel methodology for design, analysis and optimization of Power Electronic Module layouts
Power Electronic Module (PEM) design requires simultaneous analysis of thermal, electrical, and mechanical parameters to design an optimal layout. The current design process being used by package designers involves a sequential procedure instead of a simultaneous process. Each design step involves t...
Saved in:
Published in | 2010 IEEE Energy Conversion Congress and Exposition pp. 2692 - 2699 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2010
|
Subjects | |
Online Access | Get full text |
ISBN | 1424452864 9781424452866 |
ISSN | 2329-3721 |
DOI | 10.1109/ECCE.2010.5618043 |
Cover
Summary: | Power Electronic Module (PEM) design requires simultaneous analysis of thermal, electrical, and mechanical parameters to design an optimal layout. The current design process being used by package designers involves a sequential procedure instead of a simultaneous process. Each design step involves the analysis of the thermal, electrical or mechanical aspects of the design. As a result, the designer has to iterate between the various design process steps in order to achieve an optimal design. This causes a substantial increase in the design cycle time. A new methodology has been developed and implemented in this work that helps to automate and optimize the PEM design process. Power-CAD uses an electrothermal simulation methodology, a parasitic extraction tool, and an optimization algorithm that helps to achieve an optimal layout for a discrete PEM. This approach promises to save time and money for the PEM design industry by significantly reducing the number of design cycles. |
---|---|
ISBN: | 1424452864 9781424452866 |
ISSN: | 2329-3721 |
DOI: | 10.1109/ECCE.2010.5618043 |