Perfect Match: Improved Cross-modal Embeddings for Audio-visual Synchronisation
This paper proposes a new strategy for learning powerful cross-modal embeddings for audio-to-video synchronisation. Here, we set up the problem as one of cross-modal retrieval, where the objective is to find the most relevant audio segment given a short video clip. The method builds on the recent ad...
Saved in:
Published in | ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 3965 - 3969 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper proposes a new strategy for learning powerful cross-modal embeddings for audio-to-video synchronisation. Here, we set up the problem as one of cross-modal retrieval, where the objective is to find the most relevant audio segment given a short video clip. The method builds on the recent advances in learning representations from cross-modal self-supervision. The main contributions of this paper are as follows: (1) we propose a new learning strategy where the embeddings are learnt via a multi-way matching problem, as opposed to a binary classification (matching or non-matching) problem as proposed by recent papers; (2) we demonstrate that performance of this method far exceeds the existing baselines on the synchronisation task; (3) we use the learnt embeddings for visual speech recognition in self-supervision, and show that the performance matches the representations learnt end-to-end in a fully-supervised manner. |
---|---|
ISSN: | 2379-190X |
DOI: | 10.1109/ICASSP.2019.8682524 |