Detecting emphysema with multiple instance learning
Emphysema is part of chronic obstructive pulmonary disease, a leading cause of mortality worldwide. Visual assessment of emphysema presence is useful for identifying subjects at risk and for research into disease development. We train a machine learning method to predict emphysema from visually asse...
Saved in:
Published in | Proceedings (International Symposium on Biomedical Imaging) pp. 510 - 513 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.04.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Emphysema is part of chronic obstructive pulmonary disease, a leading cause of mortality worldwide. Visual assessment of emphysema presence is useful for identifying subjects at risk and for research into disease development. We train a machine learning method to predict emphysema from visually assessed expert labels. We use a multiple instance learning approach to predict both scan-level and region-level emphysema presence. We evaluate performance on 600 low-dose CT scans from the Danish Lung Cancer Screening Study and achieve an AUC of 0.82 for scan-level prediction and AUCs between 0.76 and 0.88 for region-level prediction. |
---|---|
ISSN: | 1945-8452 |
DOI: | 10.1109/ISBI.2018.8363627 |