Audio-visual affect recognition through multi-stream fused HMM for HCI

Advances in computer processing power and emerging algorithms are allowing new ways of envisioning human computer interaction. This paper focuses on the development of a computing algorithm that uses audio and visual sensors to detect and track a user's affective state to aid computer decision...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 967 - 972 vol. 2
Main Authors Zeng, Z., Tu, J., Pianfetti, B., Liu, M., Zhang, T., Zhang, Z., Huang, T.S., Levinson, S.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Advances in computer processing power and emerging algorithms are allowing new ways of envisioning human computer interaction. This paper focuses on the development of a computing algorithm that uses audio and visual sensors to detect and track a user's affective state to aid computer decision making. Using our multi-stream fused hidden Markov model (MFHMM), we analyzed coupled audio and visual streams to detect 11 cognitive/emotive states. The MFHMM allows the building of an optimal connection among multiple streams according to the maximum entropy principle and the maximum mutual information criterion. Person-independent experimental results from 20 subjects in 660 sequences show that the MFHMM approach performs with an accuracy of 80.61% which outperforms face-only HMM, pitch-only HMM, energy-only HMM, and independent HMM fusion.
AbstractList Advances in computer processing power and emerging algorithms are allowing new ways of envisioning human computer interaction. This paper focuses on the development of a computing algorithm that uses audio and visual sensors to detect and track a user's affective state to aid computer decision making. Using our multi-stream fused hidden Markov model (MFHMM), we analyzed coupled audio and visual streams to detect 11 cognitive/emotive states. The MFHMM allows the building of an optimal connection among multiple streams according to the maximum entropy principle and the maximum mutual information criterion. Person-independent experimental results from 20 subjects in 660 sequences show that the MFHMM approach performs with an accuracy of 80.61% which outperforms face-only HMM, pitch-only HMM, energy-only HMM, and independent HMM fusion.
Author Zhang, T.
Levinson, S.
Tu, J.
Pianfetti, B.
Huang, T.S.
Liu, M.
Zeng, Z.
Zhang, Z.
Author_xml – sequence: 1
  givenname: Z.
  surname: Zeng
  fullname: Zeng, Z.
  organization: Illinois Univ., Urbana, IL, USA
– sequence: 2
  givenname: J.
  surname: Tu
  fullname: Tu, J.
  organization: Illinois Univ., Urbana, IL, USA
– sequence: 3
  givenname: B.
  surname: Pianfetti
  fullname: Pianfetti, B.
  organization: Illinois Univ., Urbana, IL, USA
– sequence: 4
  givenname: M.
  surname: Liu
  fullname: Liu, M.
  organization: Illinois Univ., Urbana, IL, USA
– sequence: 5
  givenname: T.
  surname: Zhang
  fullname: Zhang, T.
  organization: Illinois Univ., Urbana, IL, USA
– sequence: 6
  givenname: Z.
  surname: Zhang
  fullname: Zhang, Z.
  organization: Illinois Univ., Urbana, IL, USA
– sequence: 7
  givenname: T.S.
  surname: Huang
  fullname: Huang, T.S.
  organization: Illinois Univ., Urbana, IL, USA
– sequence: 8
  givenname: S.
  surname: Levinson
  fullname: Levinson, S.
  organization: Illinois Univ., Urbana, IL, USA
BookMark eNpNjstKw0AYRgetYFu7c-dmXiBxLslcliVYU2hRRN2WufzTjuQiyUTw7S3owm9zFgcO3wLNur4DhG4pySkl-r56f37JGSFlLuUFmlMieCY01ZdoQaTQJeOSsdk_cY1W4_hBzuOaq4LN0WY9-dhnX3GcTINNCOASHsD1xy6m2Hc4nYZ-Op5wOzUpZmMawLQ4TCN4XO_3OPQDrqvtDboKphlh9cclets8vFZ1tnt63FbrXRapLFPmrRaKO1GCdLYwiloOCoIOjHEhzm-Vp8CgEExYSyQlxKnACmk9eEeU50t099uNAHD4HGJrhu8DLYQsC8l_ALRvTgg
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.77
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 972 vol. 2
ExternalDocumentID 1467547
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-db9683c65e7cb4a81b3e8ef9f223663728d1e2e4626bb07100c8f247bdedc08d3
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:38 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-db9683c65e7cb4a81b3e8ef9f223663728d1e2e4626bb07100c8f247bdedc08d3
ParticipantIDs ieee_primary_1467547
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.8375436
Snippet Advances in computer processing power and emerging algorithms are allowing new ways of envisioning human computer interaction. This paper focuses on the...
SourceID ieee
SourceType Publisher
StartPage 967
SubjectTerms Application software
Coupled mode analysis
Decision making
Entropy
Hidden Markov models
Human computer interaction
Mutual information
Streaming media
Testing
Training data
Title Audio-visual affect recognition through multi-stream fused HMM for HCI
URI https://ieeexplore.ieee.org/document/1467547
Volume 2
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtuKbPXh02zTJvo5SLFGIFLHSW9lXoKiJ2MSDv97dzUMUD96yEwjJkmW-mfm-GQAuVUacl1WIhwFFsRQMMR0KxLmiNAuwZMKpkdN7kizjuxVe9cBVp4UxxnjymRm7S1_L14WqXKps4k41jukO2LGBW63V6vIpTmPKmjDPrSMb2RDeVRRCN43FVz5JhAif8jqE59jdCJtOPO2adwx5Ppk9LR7q1Av9OYHFO6D5AKTtq9e8k-dxVcqx-vzV1fG_37YHRt9SP7jonNg-6Jn8AAwabAqbk7-1pnb8Q2sbgvl1pTcF-thsK_EChSeGwI6QVOSwmQEEPWkROVWKeIVZtbUPTtIUWrgMk9ntCCznN4-zBDVjGdDGYo0SackJixTBhioZC4t7I8NMxjOLNCx-oSHTUxOa2IZKUvruQYplYUylNloFTEeHoJ8XuTkCMMCYaRlIHuk4FiISmcDCeg-FSRaIaXQMhm6n1m915411s0knf5tPwa5vrOoTJGegX75X5txChlJe-H_lC6pAt84
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGDEbZrEiT2iiipAU1WoRd0qvyJVQIJowsCvx3YeCMTAFl-kKLFi3Xd333cHwJVIAuNlBaKuEyKfM4KIdBmiVIRh4mBOmFEjx9MgWvj3S7xsgetGC6OUsuQz1TeXtpYvM1GYVNnAnGrsh1tgW_t9PCzVWk1GxahMSRXombWnY5uANjUF18xjsbXPwEMBHdIyiKfY3HCrXjz1mjYceToYPc0ey-RL-HMGi3VB4w6I65cvmSfP_SLnffH5q6_jf79uD_S-xX5w1rixfdBS6QHoVOgUVmd_o031AIja1gXjm0KuM_Sx3hTsBTJLDYENJSlLYTUFCFraIjK6FPYKk2KjHxzFMdSAGUajux5YjG_nowhVgxnQWqONHElOA-KJAKtQcJ9p5OspohKaaKyhEUzoEjlUrvJ1sMS57R8kSOL6IZdKCodI7xC00yxVRwA6GBPJHU496fuMeSxhmGn_IXCQOGzoHYOu2anVW9l7Y1Vt0snf5kuwE83jyWpyN304Bbu2zapNl5yBdv5eqHMNIHJ-Yf-bL3iCuxc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Audio-visual+affect+recognition+through+multi-stream+fused+HMM+for+HCI&rft.au=Zeng%2C+Z.&rft.au=Tu%2C+J.&rft.au=Pianfetti%2C+B.&rft.au=Liu%2C+M.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=967&rft.epage=972+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.77&rft.externalDocID=1467547
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon