Audio-visual affect recognition through multi-stream fused HMM for HCI
Advances in computer processing power and emerging algorithms are allowing new ways of envisioning human computer interaction. This paper focuses on the development of a computing algorithm that uses audio and visual sensors to detect and track a user's affective state to aid computer decision...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 967 - 972 vol. 2 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Advances in computer processing power and emerging algorithms are allowing new ways of envisioning human computer interaction. This paper focuses on the development of a computing algorithm that uses audio and visual sensors to detect and track a user's affective state to aid computer decision making. Using our multi-stream fused hidden Markov model (MFHMM), we analyzed coupled audio and visual streams to detect 11 cognitive/emotive states. The MFHMM allows the building of an optimal connection among multiple streams according to the maximum entropy principle and the maximum mutual information criterion. Person-independent experimental results from 20 subjects in 660 sequences show that the MFHMM approach performs with an accuracy of 80.61% which outperforms face-only HMM, pitch-only HMM, energy-only HMM, and independent HMM fusion. |
---|---|
AbstractList | Advances in computer processing power and emerging algorithms are allowing new ways of envisioning human computer interaction. This paper focuses on the development of a computing algorithm that uses audio and visual sensors to detect and track a user's affective state to aid computer decision making. Using our multi-stream fused hidden Markov model (MFHMM), we analyzed coupled audio and visual streams to detect 11 cognitive/emotive states. The MFHMM allows the building of an optimal connection among multiple streams according to the maximum entropy principle and the maximum mutual information criterion. Person-independent experimental results from 20 subjects in 660 sequences show that the MFHMM approach performs with an accuracy of 80.61% which outperforms face-only HMM, pitch-only HMM, energy-only HMM, and independent HMM fusion. |
Author | Zhang, T. Levinson, S. Tu, J. Pianfetti, B. Huang, T.S. Liu, M. Zeng, Z. Zhang, Z. |
Author_xml | – sequence: 1 givenname: Z. surname: Zeng fullname: Zeng, Z. organization: Illinois Univ., Urbana, IL, USA – sequence: 2 givenname: J. surname: Tu fullname: Tu, J. organization: Illinois Univ., Urbana, IL, USA – sequence: 3 givenname: B. surname: Pianfetti fullname: Pianfetti, B. organization: Illinois Univ., Urbana, IL, USA – sequence: 4 givenname: M. surname: Liu fullname: Liu, M. organization: Illinois Univ., Urbana, IL, USA – sequence: 5 givenname: T. surname: Zhang fullname: Zhang, T. organization: Illinois Univ., Urbana, IL, USA – sequence: 6 givenname: Z. surname: Zhang fullname: Zhang, Z. organization: Illinois Univ., Urbana, IL, USA – sequence: 7 givenname: T.S. surname: Huang fullname: Huang, T.S. organization: Illinois Univ., Urbana, IL, USA – sequence: 8 givenname: S. surname: Levinson fullname: Levinson, S. organization: Illinois Univ., Urbana, IL, USA |
BookMark | eNpNjstKw0AYRgetYFu7c-dmXiBxLslcliVYU2hRRN2WufzTjuQiyUTw7S3owm9zFgcO3wLNur4DhG4pySkl-r56f37JGSFlLuUFmlMieCY01ZdoQaTQJeOSsdk_cY1W4_hBzuOaq4LN0WY9-dhnX3GcTINNCOASHsD1xy6m2Hc4nYZ-Op5wOzUpZmMawLQ4TCN4XO_3OPQDrqvtDboKphlh9cclets8vFZ1tnt63FbrXRapLFPmrRaKO1GCdLYwiloOCoIOjHEhzm-Vp8CgEExYSyQlxKnACmk9eEeU50t099uNAHD4HGJrhu8DLYQsC8l_ALRvTgg |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.77 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 972 vol. 2 |
ExternalDocumentID | 1467547 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-db9683c65e7cb4a81b3e8ef9f223663728d1e2e4626bb07100c8f247bdedc08d3 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:38 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-db9683c65e7cb4a81b3e8ef9f223663728d1e2e4626bb07100c8f247bdedc08d3 |
ParticipantIDs | ieee_primary_1467547 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.8375436 |
Snippet | Advances in computer processing power and emerging algorithms are allowing new ways of envisioning human computer interaction. This paper focuses on the... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 967 |
SubjectTerms | Application software Coupled mode analysis Decision making Entropy Hidden Markov models Human computer interaction Mutual information Streaming media Testing Training data |
Title | Audio-visual affect recognition through multi-stream fused HMM for HCI |
URI | https://ieeexplore.ieee.org/document/1467547 |
Volume | 2 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5qT56qtuKbPXh02zTJvo5SLFGIFLHSW9lXoKiJ2MSDv97dzUMUD96yEwjJkmW-mfm-GQAuVUacl1WIhwFFsRQMMR0KxLmiNAuwZMKpkdN7kizjuxVe9cBVp4UxxnjymRm7S1_L14WqXKps4k41jukO2LGBW63V6vIpTmPKmjDPrSMb2RDeVRRCN43FVz5JhAif8jqE59jdCJtOPO2adwx5Ppk9LR7q1Av9OYHFO6D5AKTtq9e8k-dxVcqx-vzV1fG_37YHRt9SP7jonNg-6Jn8AAwabAqbk7-1pnb8Q2sbgvl1pTcF-thsK_EChSeGwI6QVOSwmQEEPWkROVWKeIVZtbUPTtIUWrgMk9ntCCznN4-zBDVjGdDGYo0SackJixTBhioZC4t7I8NMxjOLNCx-oSHTUxOa2IZKUvruQYplYUylNloFTEeHoJ8XuTkCMMCYaRlIHuk4FiISmcDCeg-FSRaIaXQMhm6n1m915411s0knf5tPwa5vrOoTJGegX75X5txChlJe-H_lC6pAt84 |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGDEbZrEiT2iiipAU1WoRd0qvyJVQIJowsCvx3YeCMTAFl-kKLFi3Xd333cHwJVIAuNlBaKuEyKfM4KIdBmiVIRh4mBOmFEjx9MgWvj3S7xsgetGC6OUsuQz1TeXtpYvM1GYVNnAnGrsh1tgW_t9PCzVWk1GxahMSRXombWnY5uANjUF18xjsbXPwEMBHdIyiKfY3HCrXjz1mjYceToYPc0ey-RL-HMGi3VB4w6I65cvmSfP_SLnffH5q6_jf79uD_S-xX5w1rixfdBS6QHoVOgUVmd_o031AIja1gXjm0KuM_Sx3hTsBTJLDYENJSlLYTUFCFraIjK6FPYKk2KjHxzFMdSAGUajux5YjG_nowhVgxnQWqONHElOA-KJAKtQcJ9p5OspohKaaKyhEUzoEjlUrvJ1sMS57R8kSOL6IZdKCodI7xC00yxVRwA6GBPJHU496fuMeSxhmGn_IXCQOGzoHYOu2anVW9l7Y1Vt0snf5kuwE83jyWpyN304Bbu2zapNl5yBdv5eqHMNIHJ-Yf-bL3iCuxc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Audio-visual+affect+recognition+through+multi-stream+fused+HMM+for+HCI&rft.au=Zeng%2C+Z.&rft.au=Tu%2C+J.&rft.au=Pianfetti%2C+B.&rft.au=Liu%2C+M.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=2&rft.spage=967&rft.epage=972+vol.+2&rft_id=info:doi/10.1109%2FCVPR.2005.77&rft.externalDocID=1467547 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |