Audio-visual affect recognition through multi-stream fused HMM for HCI
Advances in computer processing power and emerging algorithms are allowing new ways of envisioning human computer interaction. This paper focuses on the development of a computing algorithm that uses audio and visual sensors to detect and track a user's affective state to aid computer decision...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 2; pp. 967 - 972 vol. 2 |
---|---|
Main Authors | , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Advances in computer processing power and emerging algorithms are allowing new ways of envisioning human computer interaction. This paper focuses on the development of a computing algorithm that uses audio and visual sensors to detect and track a user's affective state to aid computer decision making. Using our multi-stream fused hidden Markov model (MFHMM), we analyzed coupled audio and visual streams to detect 11 cognitive/emotive states. The MFHMM allows the building of an optimal connection among multiple streams according to the maximum entropy principle and the maximum mutual information criterion. Person-independent experimental results from 20 subjects in 660 sequences show that the MFHMM approach performs with an accuracy of 80.61% which outperforms face-only HMM, pitch-only HMM, energy-only HMM, and independent HMM fusion. |
---|---|
ISBN: | 0769523722 9780769523729 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2005.77 |