DDF-SAM: Fully distributed SLAM using Constrained Factor Graphs
We address the problem of multi-robot distributed SLAM with an extended Smoothing and Mapping (SAM) approach to implement Decentralized Data Fusion (DDF). We present DDF-SAM, a novel method for efficiently and robustly distributing map information across a team of robots, to achieve scalability in c...
Saved in:
Published in | 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 3025 - 3030 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We address the problem of multi-robot distributed SLAM with an extended Smoothing and Mapping (SAM) approach to implement Decentralized Data Fusion (DDF). We present DDF-SAM, a novel method for efficiently and robustly distributing map information across a team of robots, to achieve scalability in computational cost and in communication bandwidth and robustness to node failure and to changes in network topology. DDF-SAM consists of three modules: (1) a local optimization module to execute single-robot SAM and condense the local graph; (2) a communication module to collect and propagate condensed local graphs to other robots, and (3) a neighborhood graph optimizer module to combine local graphs into maps describing the neighborhood of a robot. We demonstrate scalability and robustness through a simulated example, in which inference is consistently faster than a comparable naive approach. |
---|---|
ISBN: | 9781424466740 1424466741 |
ISSN: | 2153-0858 |
DOI: | 10.1109/IROS.2010.5652875 |