Disguised Face Identification (DFI) with Facial KeyPoints Using Spatial Fusion Convolutional Network
Disguised face identification (DFI) is an extremely challenging problem due to the numerous variations that can be introduced using different disguises. This paper introduces a deep learning framework to first detect 14 facial key-points which are then utilized to perform disguised face identificati...
Saved in:
Published in | 2017 IEEE International Conference on Computer Vision Workshops (ICCVW) pp. 1648 - 1655 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Disguised face identification (DFI) is an extremely challenging problem due to the numerous variations that can be introduced using different disguises. This paper introduces a deep learning framework to first detect 14 facial key-points which are then utilized to perform disguised face identification. Since the training of deep learning architectures relies on large annotated datasets, two annotated facial key-points datasets are introduced. The effectiveness of the facial keypoint detection framework is presented for each keypoint. The superiority of the key-point detection framework is also demonstrated by a comparison with other deep networks. The effectiveness of classification performance is also demonstrated by comparison with the state-of-the-art face disguise classification methods. |
---|---|
ISSN: | 2473-9944 |
DOI: | 10.1109/ICCVW.2017.193 |