Subtopic-based multi-document summarization
This paper proposes a novel approach for multi-document summarization based on subtopic segmentation. It firstly detects the subtopics in a topic, and then finds the central sentence for each subtopic. The sentences are scored based on their importance in the document and in the subtopic. Two anti-r...
Saved in:
Published in | 2009 International Conference on Machine Learning and Cybernetics Vol. 6; pp. 3505 - 3510 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2009
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper proposes a novel approach for multi-document summarization based on subtopic segmentation. It firstly detects the subtopics in a topic, and then finds the central sentence for each subtopic. The sentences are scored based on their importance in the document and in the subtopic. Two anti-redundancy strategies are used to extract sentences to form summarization. Since our approach is intrinsically incremental, it is effective when new documents are added to the document set. Experimental results indicate that the proposed approach is effective and efficient. |
---|---|
ISBN: | 9781424437023 1424437024 |
ISSN: | 2160-133X |
DOI: | 10.1109/ICMLC.2009.5212767 |