3D Pose Regression Using Convolutional Neural Networks
3D pose estimation is a key component of many important computer vision tasks like autonomous navigation and robot manipulation. Current state-of-the-art approaches for 3D object pose estimation, like Viewpoints & Keypoints and Render for CNN, solve this problem by discretizing the pose space in...
Saved in:
Published in | 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) pp. 494 - 495 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | 3D pose estimation is a key component of many important computer vision tasks like autonomous navigation and robot manipulation. Current state-of-the-art approaches for 3D object pose estimation, like Viewpoints & Keypoints and Render for CNN, solve this problem by discretizing the pose space into bins and solving a pose-classification task. We argue that 3D pose is continuous and can be solved in a regression framework if done with the right representation, data augmentation and loss function. We modify a standard VGG network for the task of 3D pose regression and show competitive performance compared to state-of-the-art. |
---|---|
ISSN: | 2160-7516 |
DOI: | 10.1109/CVPRW.2017.73 |