Deep belief nets for natural language call-routing

This paper considers application of Deep Belief Nets (DBNs) to natural language call routing. DBNs have been successfully applied to a number of tasks, including image, audio and speech classification, thanks to the recent discovery of an efficient learning technique. DBNs learn a multi-layer genera...

Full description

Saved in:
Bibliographic Details
Published in2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 5680 - 5683
Main Authors Sarikaya, Ruhi, Hinton, Geoffrey E., Ramabhadran, Bhuvana
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2011
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper considers application of Deep Belief Nets (DBNs) to natural language call routing. DBNs have been successfully applied to a number of tasks, including image, audio and speech classification, thanks to the recent discovery of an efficient learning technique. DBNs learn a multi-layer generative model from unlabeled data and the features discovered by this model are then used to initialize a feed-forward neural network which is fine-tuned with backpropagation. We compare a DBN-initialized neural network to three widely used text classification algorithms; Support Vector machines (SVM), Boosting and Maximum Entropy (MaxEnt). The DBN-based model gives a call-routing classification accuracy that is equal to the best of the other models even though it currently uses an impoverished representation of the input.
ISBN:9781457705380
1457705389
ISSN:1520-6149
DOI:10.1109/ICASSP.2011.5947649