Deep belief nets for natural language call-routing
This paper considers application of Deep Belief Nets (DBNs) to natural language call routing. DBNs have been successfully applied to a number of tasks, including image, audio and speech classification, thanks to the recent discovery of an efficient learning technique. DBNs learn a multi-layer genera...
Saved in:
Published in | 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) pp. 5680 - 5683 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper considers application of Deep Belief Nets (DBNs) to natural language call routing. DBNs have been successfully applied to a number of tasks, including image, audio and speech classification, thanks to the recent discovery of an efficient learning technique. DBNs learn a multi-layer generative model from unlabeled data and the features discovered by this model are then used to initialize a feed-forward neural network which is fine-tuned with backpropagation. We compare a DBN-initialized neural network to three widely used text classification algorithms; Support Vector machines (SVM), Boosting and Maximum Entropy (MaxEnt). The DBN-based model gives a call-routing classification accuracy that is equal to the best of the other models even though it currently uses an impoverished representation of the input. |
---|---|
ISBN: | 9781457705380 1457705389 |
ISSN: | 1520-6149 |
DOI: | 10.1109/ICASSP.2011.5947649 |