Rapid selection of reliable templates for visual tracking
We propose a method that rates the suitability of given templates for template-based tracking in real-time. This is important for applications with online template selection, such as SLAM, where it is essential to track a low number of preferably reliable templates. Our approach is based on simple i...
Saved in:
Published in | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition pp. 1355 - 1362 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We propose a method that rates the suitability of given templates for template-based tracking in real-time. This is important for applications with online template selection, such as SLAM, where it is essential to track a low number of preferably reliable templates. Our approach is based on simple image features specifically designed to identify texture properties which are problematic for tracking. During a training step, a support vector régresser is learned. It uses a tracking quality measure which considers both convergence rate and speed obtained by simulation of many tracking attempts. Finally, a minimum set of image features is identified to speedup the online selection process. In experiments on real-world video sequences our method improved the detection rate of an existing tracking-by-detection system by 8% on average. |
---|---|
ISBN: | 1424469848 9781424469840 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2010.5539812 |