Identifying topology in power networks in the absence of breaker status sensor signals
This paper presents the concept of a tapered deep neural network, subject to unsupervised training layer by layer, under a criterion of maximum entropy, to perform the estimation of breaker status in the absence of a specific sensor signal. The almost perfect prediction power of the model confirms t...
Saved in:
Published in | IEEE Mediterranean Electrotechnical Conference pp. 160 - 165 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 2158-8481 |
DOI | 10.1109/MELCON.2018.8379086 |
Cover
Loading…
Abstract | This paper presents the concept of a tapered deep neural network, subject to unsupervised training layer by layer, under a criterion of maximum entropy, to perform the estimation of breaker status in the absence of a specific sensor signal. The almost perfect prediction power of the model confirms the conjecture that the knowledge of the topology of a network is hidden in the electric measurement values in the network. A test case is presented with computing speed accelerated by using a GPU (graphics processing unit). The comparison with a previous model illustrates the superiority of the novel approach. |
---|---|
AbstractList | This paper presents the concept of a tapered deep neural network, subject to unsupervised training layer by layer, under a criterion of maximum entropy, to perform the estimation of breaker status in the absence of a specific sensor signal. The almost perfect prediction power of the model confirms the conjecture that the knowledge of the topology of a network is hidden in the electric measurement values in the network. A test case is presented with computing speed accelerated by using a GPU (graphics processing unit). The comparison with a previous model illustrates the superiority of the novel approach. |
Author | Bessa, Ricardo Iranda, Vladimiro M Oliveira, Rui |
Author_xml | – sequence: 1 givenname: Rui surname: Oliveira fullname: Oliveira, Rui organization: INESC, TEC and Faculty of Engineering of the University of Porto, Porto, Portugal – sequence: 2 givenname: Ricardo surname: Bessa fullname: Bessa, Ricardo organization: INESC TEC Institute for Sy stems and Computing Engineering, Technology and Science, Porto, Portugal – sequence: 3 givenname: Vladimiro M surname: Iranda fullname: Iranda, Vladimiro M organization: INESC TEC and Faculty of Engineering of the University of Porto, Porto, Portugal |
BookMark | eNotkM9OAjEYxKvRRECegEtfYPFru_2zR7NBIUG5qFfSZb-uFWzJtobw9q6R02R-mZnDjMlNiAEJmTGYMwbVw8tiXW9e5xyYmRuhKzDqioyZFEYJLYy4JiPOpClMadgdmab0BQBDUVVCjsjHqsWQvTv70NEcj_EQuzP1gR7jCXsaMJ9iv09_JH8itU3CsEMaHW16tPshkrLNP4kOPMXB-S7YQ7ont24QnF50Qt6fFm_1slhvnlf147rwTMtcWFDG6FZBI51ygEK7FiUwy3mpNWuUK8sBuUrZdgdoFOcVNIxXSjnJWy0mZPa_6xFxe-z9t-3P28sN4hfWIVRm |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/MELCON.2018.8379086 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISBN | 1538637383 9781538637388 |
EISSN | 2158-8481 |
EndPage | 165 |
ExternalDocumentID | 8379086 |
Genre | orig-research |
GroupedDBID | 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ABLEC ACGFS ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IEGSK IJVOP IPLJI M43 OCL RIE RIL RIO |
ID | FETCH-LOGICAL-i175t-a06887d60b5f6f0e37fde501a224771b6f447fdf96adc0e862290b12966f52d73 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:50:24 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-a06887d60b5f6f0e37fde501a224771b6f447fdf96adc0e862290b12966f52d73 |
PageCount | 6 |
ParticipantIDs | ieee_primary_8379086 |
PublicationCentury | 2000 |
PublicationDate | 2018-May |
PublicationDateYYYYMMDD | 2018-05-01 |
PublicationDate_xml | – month: 05 year: 2018 text: 2018-May |
PublicationDecade | 2010 |
PublicationTitle | IEEE Mediterranean Electrotechnical Conference |
PublicationTitleAbbrev | MELCON |
PublicationYear | 2018 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0001096935 |
Score | 1.6969427 |
Snippet | This paper presents the concept of a tapered deep neural network, subject to unsupervised training layer by layer, under a criterion of maximum entropy, to... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 160 |
SubjectTerms | Artificial neural networks deep learning Entropy information entropy Load flow Network topology Topology topology estimation Training |
Title | Identifying topology in power networks in the absence of breaker status sensor signals |
URI | https://ieeexplore.ieee.org/document/8379086 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDCSNJ92M1etKkQLA0XdKjs-o6pSUpFkgF_P2Q6tQAxsuVPiRL7h3jn37hFylzCdQDQSHpccPMx4zBM5QxNCAC5T4FZsYr5gs2XysEpXHXK_58IAgG0-A99c2n_5qswbc1Q2xGIqQwjeJV0s3BxX63Ceglg8i9N2sBBaw_nkcfy0MN1bI7998oeEis0g02My_363axzZ-k0t_fzz11jG_37cCRkcuHr0eZ-FTkkHij55dfxby2GitdNB-KCbgu6MKBotXO93ZTwIAKmQlV2n1BQrZLHFWwzRqKko-qsSrc2bmbM8IMvp5GU881oFBW-DsKD2hJGU4YoFMtVMBxBzrSANQoGJm_NQYqASdOmMCZUHgNVNlAUSIQBjOo0Uj89IrygLOCc0HgUasQUuFakkz0KpEq04RHEKmVaxuCB9syfrnRuSsW634_Jv9xU5MnFxnYPXpFe_N3CD2b2WtzasX3Rqpqw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cBI0nzZbuaqVYGmMLSoWxXHZ1RVSiqSDPDrOSehFYiBLXdKnMg3vHfOvTtC7gKuA_D6sSWkAAsRj1txwtEEF0BIBqIaNhFN-XgePC7YokXut1oYAKiKz8A2l9W_fJUlpTkq62EyFSIF3yP7iPvMrdVauxMVZOOhz5rWQmj1ouFk8Dw19Vt9u3n2xxCVCkNGRyT6fntdOrK2y0Layeevxoz__bxj0t2p9ejLFodOSAvSDnmtFbiViokW9SSED7pK6caMRaNpXf2dGw9SQBrLvFon0xRz5HiNtxipUZlT9OcZWqs302m5S-aj4WwwtpoZCtYKiUFhxWaojFDckUxz7YAvtALmuDFCtxCuxFAF6NIhj1XiAOY3XuhIJAGca-Yp4Z-SdpqlcEao33c0sgtcylNBErpSBVoJ8HwGoVZ-fE46Zk-Wm7pNxrLZjou_3bfkYDyLJsvJw_TpkhyaGNV1hFekXbyXcI1YX8ibKsRfVYqp9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Mediterranean+Electrotechnical+Conference&rft.atitle=Identifying+topology+in+power+networks+in+the+absence+of+breaker+status+sensor+signals&rft.au=Oliveira%2C+Rui&rft.au=Bessa%2C+Ricardo&rft.au=Iranda%2C+Vladimiro+M&rft.date=2018-05-01&rft.pub=IEEE&rft.eissn=2158-8481&rft.spage=160&rft.epage=165&rft_id=info:doi/10.1109%2FMELCON.2018.8379086&rft.externalDocID=8379086 |