Identifying topology in power networks in the absence of breaker status sensor signals

This paper presents the concept of a tapered deep neural network, subject to unsupervised training layer by layer, under a criterion of maximum entropy, to perform the estimation of breaker status in the absence of a specific sensor signal. The almost perfect prediction power of the model confirms t...

Full description

Saved in:
Bibliographic Details
Published inIEEE Mediterranean Electrotechnical Conference pp. 160 - 165
Main Authors Oliveira, Rui, Bessa, Ricardo, Iranda, Vladimiro M
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.05.2018
Subjects
Online AccessGet full text
ISSN2158-8481
DOI10.1109/MELCON.2018.8379086

Cover

Loading…
Abstract This paper presents the concept of a tapered deep neural network, subject to unsupervised training layer by layer, under a criterion of maximum entropy, to perform the estimation of breaker status in the absence of a specific sensor signal. The almost perfect prediction power of the model confirms the conjecture that the knowledge of the topology of a network is hidden in the electric measurement values in the network. A test case is presented with computing speed accelerated by using a GPU (graphics processing unit). The comparison with a previous model illustrates the superiority of the novel approach.
AbstractList This paper presents the concept of a tapered deep neural network, subject to unsupervised training layer by layer, under a criterion of maximum entropy, to perform the estimation of breaker status in the absence of a specific sensor signal. The almost perfect prediction power of the model confirms the conjecture that the knowledge of the topology of a network is hidden in the electric measurement values in the network. A test case is presented with computing speed accelerated by using a GPU (graphics processing unit). The comparison with a previous model illustrates the superiority of the novel approach.
Author Bessa, Ricardo
Iranda, Vladimiro M
Oliveira, Rui
Author_xml – sequence: 1
  givenname: Rui
  surname: Oliveira
  fullname: Oliveira, Rui
  organization: INESC, TEC and Faculty of Engineering of the University of Porto, Porto, Portugal
– sequence: 2
  givenname: Ricardo
  surname: Bessa
  fullname: Bessa, Ricardo
  organization: INESC TEC Institute for Sy stems and Computing Engineering, Technology and Science, Porto, Portugal
– sequence: 3
  givenname: Vladimiro M
  surname: Iranda
  fullname: Iranda, Vladimiro M
  organization: INESC TEC and Faculty of Engineering of the University of Porto, Porto, Portugal
BookMark eNotkM9OAjEYxKvRRECegEtfYPFru_2zR7NBIUG5qFfSZb-uFWzJtobw9q6R02R-mZnDjMlNiAEJmTGYMwbVw8tiXW9e5xyYmRuhKzDqioyZFEYJLYy4JiPOpClMadgdmab0BQBDUVVCjsjHqsWQvTv70NEcj_EQuzP1gR7jCXsaMJ9iv09_JH8itU3CsEMaHW16tPshkrLNP4kOPMXB-S7YQ7ont24QnF50Qt6fFm_1slhvnlf147rwTMtcWFDG6FZBI51ygEK7FiUwy3mpNWuUK8sBuUrZdgdoFOcVNIxXSjnJWy0mZPa_6xFxe-z9t-3P28sN4hfWIVRm
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/MELCON.2018.8379086
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISBN 1538637383
9781538637388
EISSN 2158-8481
EndPage 165
ExternalDocumentID 8379086
Genre orig-research
GroupedDBID 6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ABLEC
ACGFS
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IEGSK
IJVOP
IPLJI
M43
OCL
RIE
RIL
RIO
ID FETCH-LOGICAL-i175t-a06887d60b5f6f0e37fde501a224771b6f447fdf96adc0e862290b12966f52d73
IEDL.DBID RIE
IngestDate Wed Aug 27 02:50:24 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-a06887d60b5f6f0e37fde501a224771b6f447fdf96adc0e862290b12966f52d73
PageCount 6
ParticipantIDs ieee_primary_8379086
PublicationCentury 2000
PublicationDate 2018-May
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-May
PublicationDecade 2010
PublicationTitle IEEE Mediterranean Electrotechnical Conference
PublicationTitleAbbrev MELCON
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0001096935
Score 1.6969427
Snippet This paper presents the concept of a tapered deep neural network, subject to unsupervised training layer by layer, under a criterion of maximum entropy, to...
SourceID ieee
SourceType Publisher
StartPage 160
SubjectTerms Artificial neural networks
deep learning
Entropy
information entropy
Load flow
Network topology
Topology
topology estimation
Training
Title Identifying topology in power networks in the absence of breaker status sensor signals
URI https://ieeexplore.ieee.org/document/8379086
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELXaTkyAWsS3PDCSNJ92M1etKkQLA0XdKjs-o6pSUpFkgF_P2Q6tQAxsuVPiRL7h3jn37hFylzCdQDQSHpccPMx4zBM5QxNCAC5T4FZsYr5gs2XysEpXHXK_58IAgG0-A99c2n_5qswbc1Q2xGIqQwjeJV0s3BxX63Ceglg8i9N2sBBaw_nkcfy0MN1bI7998oeEis0g02My_363axzZ-k0t_fzz11jG_37cCRkcuHr0eZ-FTkkHij55dfxby2GitdNB-KCbgu6MKBotXO93ZTwIAKmQlV2n1BQrZLHFWwzRqKko-qsSrc2bmbM8IMvp5GU881oFBW-DsKD2hJGU4YoFMtVMBxBzrSANQoGJm_NQYqASdOmMCZUHgNVNlAUSIQBjOo0Uj89IrygLOCc0HgUasQUuFakkz0KpEq04RHEKmVaxuCB9syfrnRuSsW634_Jv9xU5MnFxnYPXpFe_N3CD2b2WtzasX3Rqpqw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV09T8MwELVKGWAC1CK-8cBI0nzZbuaqVYGmMLSoWxXHZ1RVSiqSDPDrOSehFYiBLXdKnMg3vHfOvTtC7gKuA_D6sSWkAAsRj1txwtEEF0BIBqIaNhFN-XgePC7YokXut1oYAKiKz8A2l9W_fJUlpTkq62EyFSIF3yP7iPvMrdVauxMVZOOhz5rWQmj1ouFk8Dw19Vt9u3n2xxCVCkNGRyT6fntdOrK2y0Layeevxoz__bxj0t2p9ejLFodOSAvSDnmtFbiViokW9SSED7pK6caMRaNpXf2dGw9SQBrLvFon0xRz5HiNtxipUZlT9OcZWqs302m5S-aj4WwwtpoZCtYKiUFhxWaojFDckUxz7YAvtALmuDFCtxCuxFAF6NIhj1XiAOY3XuhIJAGca-Yp4Z-SdpqlcEao33c0sgtcylNBErpSBVoJ8HwGoVZ-fE46Zk-Wm7pNxrLZjou_3bfkYDyLJsvJw_TpkhyaGNV1hFekXbyXcI1YX8ibKsRfVYqp9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+Mediterranean+Electrotechnical+Conference&rft.atitle=Identifying+topology+in+power+networks+in+the+absence+of+breaker+status+sensor+signals&rft.au=Oliveira%2C+Rui&rft.au=Bessa%2C+Ricardo&rft.au=Iranda%2C+Vladimiro+M&rft.date=2018-05-01&rft.pub=IEEE&rft.eissn=2158-8481&rft.spage=160&rft.epage=165&rft_id=info:doi/10.1109%2FMELCON.2018.8379086&rft.externalDocID=8379086