Identifying topology in power networks in the absence of breaker status sensor signals
This paper presents the concept of a tapered deep neural network, subject to unsupervised training layer by layer, under a criterion of maximum entropy, to perform the estimation of breaker status in the absence of a specific sensor signal. The almost perfect prediction power of the model confirms t...
Saved in:
Published in | IEEE Mediterranean Electrotechnical Conference pp. 160 - 165 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents the concept of a tapered deep neural network, subject to unsupervised training layer by layer, under a criterion of maximum entropy, to perform the estimation of breaker status in the absence of a specific sensor signal. The almost perfect prediction power of the model confirms the conjecture that the knowledge of the topology of a network is hidden in the electric measurement values in the network. A test case is presented with computing speed accelerated by using a GPU (graphics processing unit). The comparison with a previous model illustrates the superiority of the novel approach. |
---|---|
ISSN: | 2158-8481 |
DOI: | 10.1109/MELCON.2018.8379086 |