Design of an Autonomous Racecar: Perception, State Estimation and System Integration
This paper introduces jlüela driverless: the first autonomous racecar to win a Formula Student Driverless competition. In this competition, among other challenges, an autonomous racecar is tasked to complete 10 laps of a previously unknown racetrack as fast as possible and using only onboard sensing...
Saved in:
Published in | 2018 IEEE International Conference on Robotics and Automation (ICRA) pp. 2048 - 2055 |
---|---|
Main Authors | , , , , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.05.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper introduces jlüela driverless: the first autonomous racecar to win a Formula Student Driverless competition. In this competition, among other challenges, an autonomous racecar is tasked to complete 10 laps of a previously unknown racetrack as fast as possible and using only onboard sensing and computing. The key components of flüela's design are its modular redundant sub-systems that allow robust performance despite challenging perceptual conditions or partial system failures. The paper presents the integration of key components of our autonomous racecar, i.e., system design, EKF-based state estimation, LiDAR-based perception, and particle filter-based SLAM. We perform an extensive experimental evaluation on real-world data, demonstrating the system's effectiveness by outperforming the next-best ranking team by almost half the time required to finish a lap. The autonomous racecar reaches lateral and longitudinal accelerations comparable to those achieved by experienced human drivers. |
---|---|
ISSN: | 2577-087X |
DOI: | 10.1109/ICRA.2018.8462829 |