Multilinear independent components analysis
Independent components analysis (ICA) maximizes the statistical independence of the representational components of a training image ensemble, but it cannot distinguish between the different factors, or modes, inherent to image formation, including scene structure, illumination, and imaging. We intro...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 547 - 553 vol. 1 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2005.240 |
Cover
Loading…
Abstract | Independent components analysis (ICA) maximizes the statistical independence of the representational components of a training image ensemble, but it cannot distinguish between the different factors, or modes, inherent to image formation, including scene structure, illumination, and imaging. We introduce a nonlinear, multifactor model that generalizes ICA. Our multilinear ICA (MICA) model of image ensembles learns the statistically independent components of multiple factors. Whereas ICA employs linear (matrix) algebra, MICA exploits multilinear (tensor) algebra. We furthermore introduce a multilinear projection algorithm which projects an unlabeled test image into the N constituent mode spaces to simultaneously infer its mode labels. In the context of facial image ensembles, where the mode labels are person, viewpoint, illumination, expression, etc., we demonstrate that the statistical regularities learned by MICA capture information that, in conjunction with our multilinear projection algorithm, improves automatic face recognition. |
---|---|
AbstractList | Independent components analysis (ICA) maximizes the statistical independence of the representational components of a training image ensemble, but it cannot distinguish between the different factors, or modes, inherent to image formation, including scene structure, illumination, and imaging. We introduce a nonlinear, multifactor model that generalizes ICA. Our multilinear ICA (MICA) model of image ensembles learns the statistically independent components of multiple factors. Whereas ICA employs linear (matrix) algebra, MICA exploits multilinear (tensor) algebra. We furthermore introduce a multilinear projection algorithm which projects an unlabeled test image into the N constituent mode spaces to simultaneously infer its mode labels. In the context of facial image ensembles, where the mode labels are person, viewpoint, illumination, expression, etc., we demonstrate that the statistical regularities learned by MICA capture information that, in conjunction with our multilinear projection algorithm, improves automatic face recognition. |
Author | Vasilescu, M.A.O. Terzopoulos, D. |
Author_xml | – sequence: 1 givenname: M.A.O. surname: Vasilescu fullname: Vasilescu, M.A.O. organization: Dept. of Comput. Sci., Toronto Univ., Ont., Canada – sequence: 2 givenname: D. surname: Terzopoulos fullname: Terzopoulos, D. organization: Dept. of Comput. Sci., Toronto Univ., Ont., Canada |
BookMark | eNpNjUtLw0AUhQetYFu7dOUme0l67zwyc5cSfEGlIuq2DOkdGEmnIRMX_fcGdOFZfGfxwTkLMUvHxEJcI1SIQOvm8_WtkgCmkhrOxByhVmVNSOdiAbYmI5WVcvZPXIpVzl8wRZFyWs7F7ct3N8YuJvZDEdOee56QxqI9HvrpLo258Ml3pxzzlbgIvsu8-uul-Hi4f2-eys328bm525QRrRlLMkCa0AA6aFm7wKQl-r03VkJQoLwDF1SQtXa6tWAmeNKBrSJr0amluPndjcy864d48MNph7q2Co36AQF-Q9Y |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.240 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 553 vol. 1 |
ExternalDocumentID | 1467315 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-950949150180ce48fe9421ada5720f303a808f3f26484c7054c7a94fe73977183 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-950949150180ce48fe9421ada5720f303a808f3f26484c7054c7a94fe73977183 |
ParticipantIDs | ieee_primary_1467315 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.9811403 |
Snippet | Independent components analysis (ICA) maximizes the statistical independence of the representational components of a training image ensemble, but it cannot... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 547 |
SubjectTerms | Algebra Face recognition Higher order statistics Independent component analysis Layout Lighting Matrices Principal component analysis Projection algorithms Testing |
Title | Multilinear independent components analysis |
URI | https://ieeexplore.ieee.org/document/1467315 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ09TN_GbHrxptjVNm77zcAxBGeJkt5GkCQxhk9le_OvNS9NOxIO35hX68Wj6fu_r9wi5dYhWxUaMqcOyBeVMGCqFElQxzRUrDJi6QPY5my344zJddsh92wtjjPHFZ2aIhz6XX2x1haGyEe7qBDvKD5zjVvdqtfEU7DHNg5uH68R5Nhm0GQWG01h85jNLaAYx1C48pHiCBSaeZg17Ms7R5G3-UodeGAZIfoxg8RZo2iNPzbPXhSfvw6pUQ_31i9bxvy93RAb7Xr9o3lqxY9IxmxPSC-A0Clv_04ma-Q-NrE_ufPcu4lS5i9btPN0ywjr17QZLNCIZSE8GZDF9eJ3MaBi-QNcOUZQUkFkPYuT7G2vDc2uAs1gWMnWKtM7wyXyc28RihRzXwiE_LSRwawRCSvejOCXdjbvVGYksaGljlRWFu6RNFeSQmkyAhFQifeA56aM6Vh81v8YqaOLib_ElOfT0qT4MckW65a4y1w4YlOrGfxHfywutNQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QPegJFYxve_CmC7Rsu50zkaACIQYMN7Lb7ibEBAyWi7_ene0DYzx4606TPibdzjevbwDuLKJVvhYdZrFsynggNJNCCaaChKsg1ajzAtlxNJjx53k4r8FD1QujtXbFZ7pFhy6Xn66TLYXK2rSru9RRvm_tPse8W6uKqFCXaVw4erTuWt8mwiqnENA8Fpf7jLosQh9zJx5DOhEUXDzlGnd0nO3e2-Q1D74EFCL5MYTF2aB-HUbl0-elJ--tbaZaydcvYsf_vt4RNHfdft6ksmPHUNOrE6gX8NQrNv-nFZUTIEpZA-5d_y4hVbnxltVE3cyjSvX1ioo0PFnQnjRh1n-c9gasGL_AlhZTZAyJWw99YvzrJJrHRiMPfJnK0CrSWNMn405suoZq5HgiLPZLhERutCBQaX8Vp7C3src6A89gIo2vojS1lzShwhhDHQmUGEoiEDyHBqlj8ZEzbCwKTVz8Lb6Fg8F0NFwMn8Yvl3DoyFRdUOQK9rLNVl9bmJCpG_d1fAMfcbCF |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Multilinear+independent+components+analysis&rft.au=Vasilescu%2C+M.A.O.&rft.au=Terzopoulos%2C+D.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=547&rft.epage=553+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.240&rft.externalDocID=1467315 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |