Multilinear independent components analysis

Independent components analysis (ICA) maximizes the statistical independence of the representational components of a training image ensemble, but it cannot distinguish between the different factors, or modes, inherent to image formation, including scene structure, illumination, and imaging. We intro...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 547 - 553 vol. 1
Main Authors Vasilescu, M.A.O., Terzopoulos, D.
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0769523722
9780769523729
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2005.240

Cover

Loading…
Abstract Independent components analysis (ICA) maximizes the statistical independence of the representational components of a training image ensemble, but it cannot distinguish between the different factors, or modes, inherent to image formation, including scene structure, illumination, and imaging. We introduce a nonlinear, multifactor model that generalizes ICA. Our multilinear ICA (MICA) model of image ensembles learns the statistically independent components of multiple factors. Whereas ICA employs linear (matrix) algebra, MICA exploits multilinear (tensor) algebra. We furthermore introduce a multilinear projection algorithm which projects an unlabeled test image into the N constituent mode spaces to simultaneously infer its mode labels. In the context of facial image ensembles, where the mode labels are person, viewpoint, illumination, expression, etc., we demonstrate that the statistical regularities learned by MICA capture information that, in conjunction with our multilinear projection algorithm, improves automatic face recognition.
AbstractList Independent components analysis (ICA) maximizes the statistical independence of the representational components of a training image ensemble, but it cannot distinguish between the different factors, or modes, inherent to image formation, including scene structure, illumination, and imaging. We introduce a nonlinear, multifactor model that generalizes ICA. Our multilinear ICA (MICA) model of image ensembles learns the statistically independent components of multiple factors. Whereas ICA employs linear (matrix) algebra, MICA exploits multilinear (tensor) algebra. We furthermore introduce a multilinear projection algorithm which projects an unlabeled test image into the N constituent mode spaces to simultaneously infer its mode labels. In the context of facial image ensembles, where the mode labels are person, viewpoint, illumination, expression, etc., we demonstrate that the statistical regularities learned by MICA capture information that, in conjunction with our multilinear projection algorithm, improves automatic face recognition.
Author Vasilescu, M.A.O.
Terzopoulos, D.
Author_xml – sequence: 1
  givenname: M.A.O.
  surname: Vasilescu
  fullname: Vasilescu, M.A.O.
  organization: Dept. of Comput. Sci., Toronto Univ., Ont., Canada
– sequence: 2
  givenname: D.
  surname: Terzopoulos
  fullname: Terzopoulos, D.
  organization: Dept. of Comput. Sci., Toronto Univ., Ont., Canada
BookMark eNpNjUtLw0AUhQetYFu7dOUme0l67zwyc5cSfEGlIuq2DOkdGEmnIRMX_fcGdOFZfGfxwTkLMUvHxEJcI1SIQOvm8_WtkgCmkhrOxByhVmVNSOdiAbYmI5WVcvZPXIpVzl8wRZFyWs7F7ct3N8YuJvZDEdOee56QxqI9HvrpLo258Ml3pxzzlbgIvsu8-uul-Hi4f2-eys328bm525QRrRlLMkCa0AA6aFm7wKQl-r03VkJQoLwDF1SQtXa6tWAmeNKBrSJr0amluPndjcy864d48MNph7q2Co36AQF-Q9Y
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.240
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 553 vol. 1
ExternalDocumentID 1467315
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-950949150180ce48fe9421ada5720f303a808f3f26484c7054c7a94fe73977183
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-950949150180ce48fe9421ada5720f303a808f3f26484c7054c7a94fe73977183
ParticipantIDs ieee_primary_1467315
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.9811403
Snippet Independent components analysis (ICA) maximizes the statistical independence of the representational components of a training image ensemble, but it cannot...
SourceID ieee
SourceType Publisher
StartPage 547
SubjectTerms Algebra
Face recognition
Higher order statistics
Independent component analysis
Layout
Lighting
Matrices
Principal component analysis
Projection algorithms
Testing
Title Multilinear independent components analysis
URI https://ieeexplore.ieee.org/document/1467315
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJ09TN_GbHrxptjVNm77zcAxBGeJkt5GkCQxhk9le_OvNS9NOxIO35hX68Wj6fu_r9wi5dYhWxUaMqcOyBeVMGCqFElQxzRUrDJi6QPY5my344zJddsh92wtjjPHFZ2aIhz6XX2x1haGyEe7qBDvKD5zjVvdqtfEU7DHNg5uH68R5Nhm0GQWG01h85jNLaAYx1C48pHiCBSaeZg17Ms7R5G3-UodeGAZIfoxg8RZo2iNPzbPXhSfvw6pUQ_31i9bxvy93RAb7Xr9o3lqxY9IxmxPSC-A0Clv_04ma-Q-NrE_ufPcu4lS5i9btPN0ywjr17QZLNCIZSE8GZDF9eJ3MaBi-QNcOUZQUkFkPYuT7G2vDc2uAs1gWMnWKtM7wyXyc28RihRzXwiE_LSRwawRCSvejOCXdjbvVGYksaGljlRWFu6RNFeSQmkyAhFQifeA56aM6Vh81v8YqaOLib_ElOfT0qT4MckW65a4y1w4YlOrGfxHfywutNQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8JAEJ4QPegJFYxve_CmC7Rsu50zkaACIQYMN7Lb7ibEBAyWi7_ene0DYzx4606TPibdzjevbwDuLKJVvhYdZrFsynggNJNCCaaChKsg1ajzAtlxNJjx53k4r8FD1QujtXbFZ7pFhy6Xn66TLYXK2rSru9RRvm_tPse8W6uKqFCXaVw4erTuWt8mwiqnENA8Fpf7jLosQh9zJx5DOhEUXDzlGnd0nO3e2-Q1D74EFCL5MYTF2aB-HUbl0-elJ--tbaZaydcvYsf_vt4RNHfdft6ksmPHUNOrE6gX8NQrNv-nFZUTIEpZA-5d_y4hVbnxltVE3cyjSvX1ioo0PFnQnjRh1n-c9gasGL_AlhZTZAyJWw99YvzrJJrHRiMPfJnK0CrSWNMn405suoZq5HgiLPZLhERutCBQaX8Vp7C3src6A89gIo2vojS1lzShwhhDHQmUGEoiEDyHBqlj8ZEzbCwKTVz8Lb6Fg8F0NFwMn8Yvl3DoyFRdUOQK9rLNVl9bmJCpG_d1fAMfcbCF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Multilinear+independent+components+analysis&rft.au=Vasilescu%2C+M.A.O.&rft.au=Terzopoulos%2C+D.&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=547&rft.epage=553+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.240&rft.externalDocID=1467315
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon