Multilinear independent components analysis
Independent components analysis (ICA) maximizes the statistical independence of the representational components of a training image ensemble, but it cannot distinguish between the different factors, or modes, inherent to image formation, including scene structure, illumination, and imaging. We intro...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 547 - 553 vol. 1 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2005.240 |
Cover
Loading…
Summary: | Independent components analysis (ICA) maximizes the statistical independence of the representational components of a training image ensemble, but it cannot distinguish between the different factors, or modes, inherent to image formation, including scene structure, illumination, and imaging. We introduce a nonlinear, multifactor model that generalizes ICA. Our multilinear ICA (MICA) model of image ensembles learns the statistically independent components of multiple factors. Whereas ICA employs linear (matrix) algebra, MICA exploits multilinear (tensor) algebra. We furthermore introduce a multilinear projection algorithm which projects an unlabeled test image into the N constituent mode spaces to simultaneously infer its mode labels. In the context of facial image ensembles, where the mode labels are person, viewpoint, illumination, expression, etc., we demonstrate that the statistical regularities learned by MICA capture information that, in conjunction with our multilinear projection algorithm, improves automatic face recognition. |
---|---|
ISBN: | 0769523722 9780769523729 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2005.240 |