Single-Pedestrian Detection Aided by Multi-pedestrian Detection
In this paper, we address the challenging problem of detecting pedestrians who appear in groups and have interaction. A new approach is proposed for single-pedestrian detection aided by multi-pedestrian detection. A mixture model of multi-pedestrian detectors is designed to capture the unique visual...
Saved in:
Published in | 2013 IEEE Conference on Computer Vision and Pattern Recognition pp. 3198 - 3205 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2013
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, we address the challenging problem of detecting pedestrians who appear in groups and have interaction. A new approach is proposed for single-pedestrian detection aided by multi-pedestrian detection. A mixture model of multi-pedestrian detectors is designed to capture the unique visual cues which are formed by nearby multiple pedestrians but cannot be captured by single-pedestrian detectors. A probabilistic framework is proposed to model the relationship between the configurations estimated by single-and multi-pedestrian detectors, and to refine the single-pedestrian detection result with multi-pedestrian detection. It can integrate with any single-pedestrian detector without significantly increasing the computation load. 15 state-of-the-art single-pedestrian detection approaches are investigated on three widely used public datasets: Caltech, TUD-Brussels and ETH. Experimental results show that our framework significantly improves all these approaches. The average improvement is 9% on the Caltech-Test dataset, 11% on the TUD-Brussels dataset and 17% on the ETH dataset in terms of average miss rate. The lowest average miss rate is reduced from 48% to 43% on the Caltech-Test dataset, from 55% to 50% on the TUD-Brussels dataset and from 51% to 41% on the ETH dataset. |
---|---|
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2013.411 |