Multilabel random walker image segmentation using prior models
The recently introduced random walker segmentation algorithm by Grady and Funka-Lea (2004) has been shown to have desirable theoretical properties and to perform well on a wide variety of images in practice. However, this algorithm requires user-specified labels and produces a segmentation where eac...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 763 - 770 vol. 1 |
---|---|
Main Author | |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The recently introduced random walker segmentation algorithm by Grady and Funka-Lea (2004) has been shown to have desirable theoretical properties and to perform well on a wide variety of images in practice. However, this algorithm requires user-specified labels and produces a segmentation where each segment is connected to a labeled pixel. We show that incorporation of a nonparametric probability density model allows for an extended random walkers algorithm that can locate disconnected objects and does not require user-specified labels. Finally, we show that this formulation leads to a deep connection with the popular graph cuts method by Boykov et al. (2001) and Wu and Leahy (1993). |
---|---|
ISBN: | 0769523722 9780769523729 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2005.239 |