Drone-View Building Identification by Cross-View Visual Learning and Relative Spatial Estimation
Drones become popular recently and equip more sensors than traditional cameras, which bring emerging applications and research. To enable drone-based applications, providing related information (e.g., building) to understand the environment around the drone is essential. We frame this drone-view bui...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW) pp. 1558 - 15588 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Drones become popular recently and equip more sensors than traditional cameras, which bring emerging applications and research. To enable drone-based applications, providing related information (e.g., building) to understand the environment around the drone is essential. We frame this drone-view building identification as building retrieval problem: given a building (multimodal query) with its images, geolocation and drone's current location, we aim to retrieve the most likely proposal (building candidate) on a drone-view image. Despite few annotated drone-view images to date, there are many images of other views from the Web, like ground-level, street-view and aerial images. Thus, we propose a cross-view triplet neural network to learn visual similarity between drone-view and other views, further design relative spatial estimation of each proposal and the drone, and collect new drone-view datasets for the task. Our method outperforms triplet neural network by 0.12 mAP. (i.e., 22.9 to 35.0, +53% in a sub-dataset [LA]) |
---|---|
ISSN: | 2160-7516 |
DOI: | 10.1109/CVPRW.2018.00197 |