SAR image despeckling through convolutional neural networks

In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses a residual learning strategy, hence it does not recover the filtered image, but the speckle component, which is then subtracted from the nois...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Geoscience and Remote Sensing Symposium proceedings pp. 5438 - 5441
Main Authors Chierchia, G., Cozzolino, D., Poggi, G., Verdoliva, L.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2017
Subjects
Online AccessGet full text
ISSN2153-7003
DOI10.1109/IGARSS.2017.8128234

Cover

Loading…
Abstract In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses a residual learning strategy, hence it does not recover the filtered image, but the speckle component, which is then subtracted from the noisy one. Training is carried out by considering a large multitemporal SAR image and its multilook version, in order to approximate a clean image. Experimental results, both on synthetic and real SAR data, show the method to achieve better performance with respect to state-of-the-art techniques.
AbstractList In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses a residual learning strategy, hence it does not recover the filtered image, but the speckle component, which is then subtracted from the noisy one. Training is carried out by considering a large multitemporal SAR image and its multilook version, in order to approximate a clean image. Experimental results, both on synthetic and real SAR data, show the method to achieve better performance with respect to state-of-the-art techniques.
Author Cozzolino, D.
Chierchia, G.
Poggi, G.
Verdoliva, L.
Author_xml – sequence: 1
  givenname: G.
  surname: Chierchia
  fullname: Chierchia, G.
  organization: LIGM, Univ. Paris Est, Noisy-le-Grand, France
– sequence: 2
  givenname: D.
  surname: Cozzolino
  fullname: Cozzolino, D.
  organization: DIETI, Univ. Federico II of Naples, Naples, Italy
– sequence: 3
  givenname: G.
  surname: Poggi
  fullname: Poggi, G.
  organization: DIETI, Univ. Federico II of Naples, Naples, Italy
– sequence: 4
  givenname: L.
  surname: Verdoliva
  fullname: Verdoliva, L.
  organization: DIETI, Univ. Federico II of Naples, Naples, Italy
BookMark eNotj01OwzAUhA0CiaZwgm5ygYRnO65tsYoqKJUqITWwruL4OQ0NdpUfELdvBN3MN4vRaCYiNz54JGRBIaUU9ONmne-KImVAZaooU4xnVySiAjRkWlB5TWaMCp5IAH5Hor7_nIxiADPyVOS7uPkqa4wt9iesjm3j63g4dGGsD3EV_Hdox6EJvmxjj2P3h-EndMf-nty6su3x4cI5-Xh5fl-9Jtu39WaVb5OGSjEky1IJYyUq7owCI6SFaaJCkzlaSmUyPYkTFjTLuF1Kkxk-pZzVFVYOLZ-TxX9vg4j7UzfN7X73l6P8DFdCSq8
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/IGARSS.2017.8128234
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISBN 1509049517
9781509049516
EISSN 2153-7003
EndPage 5441
ExternalDocumentID 8128234
Genre orig-research
GroupedDBID 29I
6IE
6IF
6IH
6IK
6IL
6IM
6IN
AAJGR
AAWTH
ADZIZ
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CBEJK
CHZPO
IPLJI
OCL
RIE
RIL
RIO
RNS
ID FETCH-LOGICAL-i175t-6a85bd7e83fb80b57d02828eb4f1a78b4978bf5d09243d67b4b3b57fd9cecfed3
IEDL.DBID RIE
IngestDate Wed Aug 27 02:38:49 EDT 2025
IsPeerReviewed false
IsScholarly false
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-6a85bd7e83fb80b57d02828eb4f1a78b4978bf5d09243d67b4b3b57fd9cecfed3
PageCount 4
ParticipantIDs ieee_primary_8128234
PublicationCentury 2000
PublicationDate 2017-July
PublicationDateYYYYMMDD 2017-07-01
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-July
PublicationDecade 2010
PublicationTitle IEEE International Geoscience and Remote Sensing Symposium proceedings
PublicationTitleAbbrev IGARSS
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0038200
Score 2.2041225
Snippet In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses...
SourceID ieee
SourceType Publisher
StartPage 5438
SubjectTerms convolutional neural networks
Indexes
multiplicative noise
Noise measurement
Remote sensing
SAR
Speckle
Synthetic aperture radar
Training
Title SAR image despeckling through convolutional neural networks
URI https://ieeexplore.ieee.org/document/8128234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7aguDJRyu-2YNHkybZbDbBUxHbKlSktdBb2c3OSrG2oulBf727m7SiePC0YUnIY8J-M7PfzAdwoXggExlnXhxJE6AkmHiZUImnqUgRNcuC3OYhB_dJfxzfTdikBpebWhhEdOQz9O2h28tXy3xlU2VtA0ZpROM61E3gVtZqrVddapAsqLoKhUHWvu11hqORpW5xv7rsh36Kg4_uDgzWNy5ZI8_-qpB-_vmrJ-N_n2wXWt-FeuRhA0F7UMPFPmz1nFrvRxOuRp0hmb2YJYMotDWVVp79iVTaPMQyzqs_T8yJ7WzpBscLf2_BuHvzeN33KrUEb2ZcgMJLRMqk4phSLdNAMq5cOIUy1qHgqbRSclIzFZiIi6qEy1hSc5ZWWY65RkUPoLFYLvAQSMh5ZjypkCpq3CmMhDGn0EgFZ0zlMjqCpv0E09eyIca0evvjv6dPYNuaoeS4nkKjeFvhmUHyQp47E34B4cKflw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIgQnlhaxkwNHkqZxHCfiVCG6QFuhLlJvlR2PUQW0CNIDfD22k4JAHDglihJlmchvxn5vHsCFZL6IRJi4YSB0gRJh5CZcRq4iPEZUNPFTMw_Z60ftcXg7oZMSXH5pYRDRks_QM7t2LV8u0qWZKqtpMIoDEq7BOjVi3FyttRp3icYyv-grVPeTWqfVGAyHhrzFvOLCHw4qFkCa29Bb3TrnjTx6y0x46cevroz_fbYdqH5L9Zz7LxDahRLO92CjZf163ytwNWwMnNmzHjQciUZVaQzaH5zCnccxnPPi3-NPjultaTeWGf5WhXHzZnTddgu_BHemk4DMjXhMhWQYEyViX1AmbUGFIlR1zmJhzOSEotLXNReREROhIPosJZMUU4WS7EN5vpjjATh1xhKdS9WJJDqhwoDrgHKFhDNKZSqCQ6iYTzB9yVtiTIu3P_r78Dlstke97rTb6d8dw5YJSc54PYFy9rrEU43rmTiz4fwEZHqi3w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=SAR+image+despeckling+through+convolutional+neural+networks&rft.au=Chierchia%2C+G.&rft.au=Cozzolino%2C+D.&rft.au=Poggi%2C+G.&rft.au=Verdoliva%2C+L.&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=5438&rft.epage=5441&rft_id=info:doi/10.1109%2FIGARSS.2017.8128234&rft.externalDocID=8128234