SAR image despeckling through convolutional neural networks
In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses a residual learning strategy, hence it does not recover the filtered image, but the speckle component, which is then subtracted from the nois...
Saved in:
Published in | IEEE International Geoscience and Remote Sensing Symposium proceedings pp. 5438 - 5441 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2153-7003 |
DOI | 10.1109/IGARSS.2017.8128234 |
Cover
Loading…
Abstract | In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses a residual learning strategy, hence it does not recover the filtered image, but the speckle component, which is then subtracted from the noisy one. Training is carried out by considering a large multitemporal SAR image and its multilook version, in order to approximate a clean image. Experimental results, both on synthetic and real SAR data, show the method to achieve better performance with respect to state-of-the-art techniques. |
---|---|
AbstractList | In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses a residual learning strategy, hence it does not recover the filtered image, but the speckle component, which is then subtracted from the noisy one. Training is carried out by considering a large multitemporal SAR image and its multilook version, in order to approximate a clean image. Experimental results, both on synthetic and real SAR data, show the method to achieve better performance with respect to state-of-the-art techniques. |
Author | Cozzolino, D. Chierchia, G. Poggi, G. Verdoliva, L. |
Author_xml | – sequence: 1 givenname: G. surname: Chierchia fullname: Chierchia, G. organization: LIGM, Univ. Paris Est, Noisy-le-Grand, France – sequence: 2 givenname: D. surname: Cozzolino fullname: Cozzolino, D. organization: DIETI, Univ. Federico II of Naples, Naples, Italy – sequence: 3 givenname: G. surname: Poggi fullname: Poggi, G. organization: DIETI, Univ. Federico II of Naples, Naples, Italy – sequence: 4 givenname: L. surname: Verdoliva fullname: Verdoliva, L. organization: DIETI, Univ. Federico II of Naples, Naples, Italy |
BookMark | eNotj01OwzAUhA0CiaZwgm5ygYRnO65tsYoqKJUqITWwruL4OQ0NdpUfELdvBN3MN4vRaCYiNz54JGRBIaUU9ONmne-KImVAZaooU4xnVySiAjRkWlB5TWaMCp5IAH5Hor7_nIxiADPyVOS7uPkqa4wt9iesjm3j63g4dGGsD3EV_Hdox6EJvmxjj2P3h-EndMf-nty6su3x4cI5-Xh5fl-9Jtu39WaVb5OGSjEky1IJYyUq7owCI6SFaaJCkzlaSmUyPYkTFjTLuF1Kkxk-pZzVFVYOLZ-TxX9vg4j7UzfN7X73l6P8DFdCSq8 |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/IGARSS.2017.8128234 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISBN | 1509049517 9781509049516 |
EISSN | 2153-7003 |
EndPage | 5441 |
ExternalDocumentID | 8128234 |
Genre | orig-research |
GroupedDBID | 29I 6IE 6IF 6IH 6IK 6IL 6IM 6IN AAJGR AAWTH ADZIZ ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ CBEJK CHZPO IPLJI OCL RIE RIL RIO RNS |
ID | FETCH-LOGICAL-i175t-6a85bd7e83fb80b57d02828eb4f1a78b4978bf5d09243d67b4b3b57fd9cecfed3 |
IEDL.DBID | RIE |
IngestDate | Wed Aug 27 02:38:49 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | false |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-6a85bd7e83fb80b57d02828eb4f1a78b4978bf5d09243d67b4b3b57fd9cecfed3 |
PageCount | 4 |
ParticipantIDs | ieee_primary_8128234 |
PublicationCentury | 2000 |
PublicationDate | 2017-July |
PublicationDateYYYYMMDD | 2017-07-01 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-July |
PublicationDecade | 2010 |
PublicationTitle | IEEE International Geoscience and Remote Sensing Symposium proceedings |
PublicationTitleAbbrev | IGARSS |
PublicationYear | 2017 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0038200 |
Score | 2.2041225 |
Snippet | In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 5438 |
SubjectTerms | convolutional neural networks Indexes multiplicative noise Noise measurement Remote sensing SAR Speckle Synthetic aperture radar Training |
Title | SAR image despeckling through convolutional neural networks |
URI | https://ieeexplore.ieee.org/document/8128234 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7aguDJRyu-2YNHkybZbDbBUxHbKlSktdBb2c3OSrG2oulBf727m7SiePC0YUnIY8J-M7PfzAdwoXggExlnXhxJE6AkmHiZUImnqUgRNcuC3OYhB_dJfxzfTdikBpebWhhEdOQz9O2h28tXy3xlU2VtA0ZpROM61E3gVtZqrVddapAsqLoKhUHWvu11hqORpW5xv7rsh36Kg4_uDgzWNy5ZI8_-qpB-_vmrJ-N_n2wXWt-FeuRhA0F7UMPFPmz1nFrvRxOuRp0hmb2YJYMotDWVVp79iVTaPMQyzqs_T8yJ7WzpBscLf2_BuHvzeN33KrUEb2ZcgMJLRMqk4phSLdNAMq5cOIUy1qHgqbRSclIzFZiIi6qEy1hSc5ZWWY65RkUPoLFYLvAQSMh5ZjypkCpq3CmMhDGn0EgFZ0zlMjqCpv0E09eyIca0evvjv6dPYNuaoeS4nkKjeFvhmUHyQp47E34B4cKflw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIgQnlhaxkwNHkqZxHCfiVCG6QFuhLlJvlR2PUQW0CNIDfD22k4JAHDglihJlmchvxn5vHsCFZL6IRJi4YSB0gRJh5CZcRq4iPEZUNPFTMw_Z60ftcXg7oZMSXH5pYRDRks_QM7t2LV8u0qWZKqtpMIoDEq7BOjVi3FyttRp3icYyv-grVPeTWqfVGAyHhrzFvOLCHw4qFkCa29Bb3TrnjTx6y0x46cevroz_fbYdqH5L9Zz7LxDahRLO92CjZf163ytwNWwMnNmzHjQciUZVaQzaH5zCnccxnPPi3-NPjultaTeWGf5WhXHzZnTddgu_BHemk4DMjXhMhWQYEyViX1AmbUGFIlR1zmJhzOSEotLXNReREROhIPosJZMUU4WS7EN5vpjjATh1xhKdS9WJJDqhwoDrgHKFhDNKZSqCQ6iYTzB9yVtiTIu3P_r78Dlstke97rTb6d8dw5YJSc54PYFy9rrEU43rmTiz4fwEZHqi3w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=IEEE+International+Geoscience+and+Remote+Sensing+Symposium+proceedings&rft.atitle=SAR+image+despeckling+through+convolutional+neural+networks&rft.au=Chierchia%2C+G.&rft.au=Cozzolino%2C+D.&rft.au=Poggi%2C+G.&rft.au=Verdoliva%2C+L.&rft.date=2017-07-01&rft.pub=IEEE&rft.eissn=2153-7003&rft.spage=5438&rft.epage=5441&rft_id=info:doi/10.1109%2FIGARSS.2017.8128234&rft.externalDocID=8128234 |