SAR image despeckling through convolutional neural networks
In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses a residual learning strategy, hence it does not recover the filtered image, but the speckle component, which is then subtracted from the nois...
Saved in:
Published in | IEEE International Geoscience and Remote Sensing Symposium proceedings pp. 5438 - 5441 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.07.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper we investigate the use of discriminative model learning through Convolutional Neural Networks (CNNs) for SAR image despeckling. The network uses a residual learning strategy, hence it does not recover the filtered image, but the speckle component, which is then subtracted from the noisy one. Training is carried out by considering a large multitemporal SAR image and its multilook version, in order to approximate a clean image. Experimental results, both on synthetic and real SAR data, show the method to achieve better performance with respect to state-of-the-art techniques. |
---|---|
ISSN: | 2153-7003 |
DOI: | 10.1109/IGARSS.2017.8128234 |