PU-Net: Point Cloud Upsampling Network
Learning and analyzing 3D point clouds with deep networks is challenging due to the sparseness and irregularity of the data. In this paper, we present a data-driven point cloud upsampling technique. The key idea is to learn multi-level features per point and expand the point set via a multi-branch c...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2790 - 2799 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Learning and analyzing 3D point clouds with deep networks is challenging due to the sparseness and irregularity of the data. In this paper, we present a data-driven point cloud upsampling technique. The key idea is to learn multi-level features per point and expand the point set via a multi-branch convolution unit implicitly in feature space. The expanded feature is then split to a multitude of features, which are then reconstructed to an upsampled point set. Our network is applied at a patch-level, with a joint loss function that encourages the upsampled points to remain on the underlying surface with a uniform distribution. We conduct various experiments using synthesis and scan data to evaluate our method and demonstrate its superiority over some baseline methods and an optimization-based method. Results show that our upsampled points have better uniformity and are located closer to the underlying surfaces. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2018.00295 |