Robust face detection with multi-class boosting

With the aim to design a general learning framework for detecting faces of various poses or under different lighting conditions, we are motivated to formulate the task as a classification problem over data of multiple classes. Specifically, our approach focuses on a new multi-class boosting algorith...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 680 - 687 vol. 1
Main Authors Yen-Yu Lin, Tyng-Luh Liu
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text
ISBN0769523722
9780769523729
ISSN1063-6919
1063-6919
DOI10.1109/CVPR.2005.307

Cover

Loading…
Abstract With the aim to design a general learning framework for detecting faces of various poses or under different lighting conditions, we are motivated to formulate the task as a classification problem over data of multiple classes. Specifically, our approach focuses on a new multi-class boosting algorithm, called MBHboost, and its integration with a cascade structure for effectively performing face detection. There are three main advantages of using MBHboost: 1) each MBH weak learner is derived by sharing a good projection direction such that each class of data has its own decision boundary; 2) the proposed boosting algorithm is established based on an optimal criterion for multi-class classification; and 3) since MBHboost is flexible with respect to the number of classes, it turns out that it is possible to use only one single boosted cascade for the multi-class detection. All these properties give rise to a robust system to detect faces efficiently and accurately.
AbstractList With the aim to design a general learning framework for detecting faces of various poses or under different lighting conditions, we are motivated to formulate the task as a classification problem over data of multiple classes. Specifically, our approach focuses on a new multi-class boosting algorithm, called MBHboost, and its integration with a cascade structure for effectively performing face detection. There are three main advantages of using MBHboost: 1) each MBH weak learner is derived by sharing a good projection direction such that each class of data has its own decision boundary; 2) the proposed boosting algorithm is established based on an optimal criterion for multi-class classification; and 3) since MBHboost is flexible with respect to the number of classes, it turns out that it is possible to use only one single boosted cascade for the multi-class detection. All these properties give rise to a robust system to detect faces efficiently and accurately.
Author Tyng-Luh Liu
Yen-Yu Lin
Author_xml – sequence: 1
  surname: Yen-Yu Lin
  fullname: Yen-Yu Lin
  organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan
– sequence: 2
  surname: Tyng-Luh Liu
  fullname: Tyng-Luh Liu
  organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan
BookMark eNpNjEFLwzAYQINOcJs7evKSP9Du-_I1Sb-jFJ3CwDHGriNtU410rSwZ4r9X0IPv8g4P3kxMhnHwQtwi5IjAy2q_2eYKQOcE9kJMEQxlhpEvxQysYa3IKjX5F67FIsZ3-IGYykJNxXI71ueYZOcaL1uffJPCOMjPkN7k8dynkDW9i1HW4xhTGF5vxFXn-ugXf56L3ePDrnrK1i-r5-p-nQW0OmVGGbbWKiYgzbrVCA3pDowrmVusAevCtA4bQ6pj0-qS2DlLUJZFR5bm4u53G7z3h49TOLrT1wELY4kK-gaYVURY
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.307
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Xplore
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 687 vol. 1
ExternalDocumentID 1467334
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-626977729303595d510c35f06a899d1b01b46da1c632f96d5839aa730884f373
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-626977729303595d510c35f06a899d1b01b46da1c632f96d5839aa730884f373
ParticipantIDs ieee_primary_1467334
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.7321014
Snippet With the aim to design a general learning framework for detecting faces of various poses or under different lighting conditions, we are motivated to formulate...
SourceID ieee
SourceType Publisher
StartPage 680
SubjectTerms Boosting
Computer vision
Detectors
Face detection
Information science
Multi-layer neural network
Multilayer perceptrons
Neural networks
Robustness
Testing
Title Robust face detection with multi-class boosting
URI https://ieeexplore.ieee.org/document/1467334
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anjxVbcU3OXh02yazWbPnYilCpZQqvZVkHyBCKja5-Oud3TyK4sFbdgIhGXay3zdPgDtMCdRPjGVKZZxxjBSTRnEydy3REma23qe7eBbzF_60iTcduG9rYYwxPvnMjNylj-XrnSqdq2zsrBqRd6FLxK2q1Wr9Ka7GNKlpnlsjMRsh24hC5Kax-MinQCZkKCsKL2N3I6o78TRreWjGOZ6-LleV6wUnP0ew-BNo1odF8-5V4sn7qCyykfr61dbxvx93DMNDrV-wbE-xE-iY_BT6NTgNatPfk6iZ_9DIBjBe7bJyXwQ2pWdoU_isrjxwrt3AJyoy5bB5QEB-77Krh7CePa6nc1YPYGBvhCoKRmSH4CHpA12jv1iT_SqM7USkxNJ0mE3CjAudhkpgZKXQMaGtNKV_RpJwiw94Br18l5tzCBIbIlFHRbrWPDUEkjKtLGEvLgxyaS9g4DSy_ahabGxrZVz-Lb6CI99B1XtCrqFXfJbmhrBBkd36TfENXLStaw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPeipaiu-zcGj2ybZzZo9F6VqW0qp0ltJ9gEipGKTi7_e2c2jKB68ZTcQkmEn833zBLihCYJ6XxsiZcoIo6EkQkuG6q4ENYiZjfPpTqZ89MKeltGyBbdNLYzW2iWf6b69dLF8tZaFdZUNrFZTynZgF-0-E2W1VuNRsVWmcUX07Joit-GiiSmEdh6Li31ySrgIREniRWRvhFUvnnottu04B8PX2bx0vlD_5xAWZ4MeOjCp375MPXnvF3nal1-_Gjv-9_MOoLet9vNmjR07hJbOjqBTwVOvUv4NbtUTIOq9Lgzm67TY5J5J8BlK5y6vK_Osc9dzqYpEWnTuIZTf2PzqHiwe7hfDEalGMJA3xBU5QbqDABHlQW2rv0ihBksaGZ8nyNNUkPpByrhKAslpaARXEeKtJMG_RhwzQ-_oMbSzdaZPwItNQJE8SpS1YolGmJQqaRB9Ma4pE-YUulYiq4-yycaqEsbZ39vXsDdaTMar8eP0-Rz2XT9V5xe5gHb-WehLRAp5euUOyDe0s7C7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Robust+face+detection+with+multi-class+boosting&rft.au=Yen-Yu+Lin&rft.au=Tyng-Luh+Liu&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=680&rft.epage=687+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.307&rft.externalDocID=1467334
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon