Robust face detection with multi-class boosting
With the aim to design a general learning framework for detecting faces of various poses or under different lighting conditions, we are motivated to formulate the task as a classification problem over data of multiple classes. Specifically, our approach focuses on a new multi-class boosting algorith...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 680 - 687 vol. 1 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2005.307 |
Cover
Loading…
Abstract | With the aim to design a general learning framework for detecting faces of various poses or under different lighting conditions, we are motivated to formulate the task as a classification problem over data of multiple classes. Specifically, our approach focuses on a new multi-class boosting algorithm, called MBHboost, and its integration with a cascade structure for effectively performing face detection. There are three main advantages of using MBHboost: 1) each MBH weak learner is derived by sharing a good projection direction such that each class of data has its own decision boundary; 2) the proposed boosting algorithm is established based on an optimal criterion for multi-class classification; and 3) since MBHboost is flexible with respect to the number of classes, it turns out that it is possible to use only one single boosted cascade for the multi-class detection. All these properties give rise to a robust system to detect faces efficiently and accurately. |
---|---|
AbstractList | With the aim to design a general learning framework for detecting faces of various poses or under different lighting conditions, we are motivated to formulate the task as a classification problem over data of multiple classes. Specifically, our approach focuses on a new multi-class boosting algorithm, called MBHboost, and its integration with a cascade structure for effectively performing face detection. There are three main advantages of using MBHboost: 1) each MBH weak learner is derived by sharing a good projection direction such that each class of data has its own decision boundary; 2) the proposed boosting algorithm is established based on an optimal criterion for multi-class classification; and 3) since MBHboost is flexible with respect to the number of classes, it turns out that it is possible to use only one single boosted cascade for the multi-class detection. All these properties give rise to a robust system to detect faces efficiently and accurately. |
Author | Tyng-Luh Liu Yen-Yu Lin |
Author_xml | – sequence: 1 surname: Yen-Yu Lin fullname: Yen-Yu Lin organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan – sequence: 2 surname: Tyng-Luh Liu fullname: Tyng-Luh Liu organization: Inst. of Inf. Sci., Acad. Sinica, Taipei, Taiwan |
BookMark | eNpNjEFLwzAYQINOcJs7evKSP9Du-_I1Sb-jFJ3CwDHGriNtU410rSwZ4r9X0IPv8g4P3kxMhnHwQtwi5IjAy2q_2eYKQOcE9kJMEQxlhpEvxQysYa3IKjX5F67FIsZ3-IGYykJNxXI71ueYZOcaL1uffJPCOMjPkN7k8dynkDW9i1HW4xhTGF5vxFXn-ugXf56L3ePDrnrK1i-r5-p-nQW0OmVGGbbWKiYgzbrVCA3pDowrmVusAevCtA4bQ6pj0-qS2DlLUJZFR5bm4u53G7z3h49TOLrT1wELY4kK-gaYVURY |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.307 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Xplore IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 687 vol. 1 |
ExternalDocumentID | 1467334 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-626977729303595d510c35f06a899d1b01b46da1c632f96d5839aa730884f373 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:22 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-626977729303595d510c35f06a899d1b01b46da1c632f96d5839aa730884f373 |
ParticipantIDs | ieee_primary_1467334 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.7321014 |
Snippet | With the aim to design a general learning framework for detecting faces of various poses or under different lighting conditions, we are motivated to formulate... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 680 |
SubjectTerms | Boosting Computer vision Detectors Face detection Information science Multi-layer neural network Multilayer perceptrons Neural networks Robustness Testing |
Title | Robust face detection with multi-class boosting |
URI | https://ieeexplore.ieee.org/document/1467334 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB7anjxVbcU3OXh02yazWbPnYilCpZQqvZVkHyBCKja5-Oud3TyK4sFbdgIhGXay3zdPgDtMCdRPjGVKZZxxjBSTRnEydy3REma23qe7eBbzF_60iTcduG9rYYwxPvnMjNylj-XrnSqdq2zsrBqRd6FLxK2q1Wr9Ka7GNKlpnlsjMRsh24hC5Kax-MinQCZkKCsKL2N3I6o78TRreWjGOZ6-LleV6wUnP0ew-BNo1odF8-5V4sn7qCyykfr61dbxvx93DMNDrV-wbE-xE-iY_BT6NTgNatPfk6iZ_9DIBjBe7bJyXwQ2pWdoU_isrjxwrt3AJyoy5bB5QEB-77Krh7CePa6nc1YPYGBvhCoKRmSH4CHpA12jv1iT_SqM7USkxNJ0mE3CjAudhkpgZKXQMaGtNKV_RpJwiw94Br18l5tzCBIbIlFHRbrWPDUEkjKtLGEvLgxyaS9g4DSy_ahabGxrZVz-Lb6CI99B1XtCrqFXfJbmhrBBkd36TfENXLStaw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEB5qPeipaiu-zcGj2ybZzZo9F6VqW0qp0ltJ9gEipGKTi7_e2c2jKB68ZTcQkmEn833zBLihCYJ6XxsiZcoIo6EkQkuG6q4ENYiZjfPpTqZ89MKeltGyBbdNLYzW2iWf6b69dLF8tZaFdZUNrFZTynZgF-0-E2W1VuNRsVWmcUX07Joit-GiiSmEdh6Li31ySrgIREniRWRvhFUvnnottu04B8PX2bx0vlD_5xAWZ4MeOjCp375MPXnvF3nal1-_Gjv-9_MOoLet9vNmjR07hJbOjqBTwVOvUv4NbtUTIOq9Lgzm67TY5J5J8BlK5y6vK_Osc9dzqYpEWnTuIZTf2PzqHiwe7hfDEalGMJA3xBU5QbqDABHlQW2rv0ihBksaGZ8nyNNUkPpByrhKAslpaARXEeKtJMG_RhwzQ-_oMbSzdaZPwItNQJE8SpS1YolGmJQqaRB9Ma4pE-YUulYiq4-yycaqEsbZ39vXsDdaTMar8eP0-Rz2XT9V5xe5gHb-WehLRAp5euUOyDe0s7C7 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Robust+face+detection+with+multi-class+boosting&rft.au=Yen-Yu+Lin&rft.au=Tyng-Luh+Liu&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=680&rft.epage=687+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.307&rft.externalDocID=1467334 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |