Robust face detection with multi-class boosting
With the aim to design a general learning framework for detecting faces of various poses or under different lighting conditions, we are motivated to formulate the task as a classification problem over data of multiple classes. Specifically, our approach focuses on a new multi-class boosting algorith...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 680 - 687 vol. 1 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | With the aim to design a general learning framework for detecting faces of various poses or under different lighting conditions, we are motivated to formulate the task as a classification problem over data of multiple classes. Specifically, our approach focuses on a new multi-class boosting algorithm, called MBHboost, and its integration with a cascade structure for effectively performing face detection. There are three main advantages of using MBHboost: 1) each MBH weak learner is derived by sharing a good projection direction such that each class of data has its own decision boundary; 2) the proposed boosting algorithm is established based on an optimal criterion for multi-class classification; and 3) since MBHboost is flexible with respect to the number of classes, it turns out that it is possible to use only one single boosted cascade for the multi-class detection. All these properties give rise to a robust system to detect faces efficiently and accurately. |
---|---|
ISBN: | 0769523722 9780769523729 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2005.307 |