Three Dimensional Energy Parametrized Generative Adversarial Networks for Electromagnetic Shower Simulation
High Energy Physics (HEP) simulations are traditionally based on the Monte Carlo approach and generally rely on time consuming calculations. The present work investigates the use of Generative Adversarial Networks (GANs) as a fast alternative. Our approach treats the energy deposited by a particle i...
Saved in:
Published in | 2018 25th IEEE International Conference on Image Processing (ICIP) pp. 3913 - 3917 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High Energy Physics (HEP) simulations are traditionally based on the Monte Carlo approach and generally rely on time consuming calculations. The present work investigates the use of Generative Adversarial Networks (GANs) as a fast alternative. Our approach treats the energy deposited by a particle inside a calorimeter detector as a three-dimensional image. True three-dimensional convolutions can be employed to capture the spatio-temporal correlation of shower energy depositions. Three-dimensional images are generated, conditioned on the energy of the incoming particle and validated against Monte Carlo simulation. The results show an agreement to full Mote Carlo simulations well within 10% thus proving that GAN can be used as a fast alternative for simulation of HEP detector response. |
---|---|
ISSN: | 2381-8549 |
DOI: | 10.1109/ICIP.2018.8451587 |