Bayesian super-resolution of text in video with a text-specific bimodal prior
To increase the range of sizes of video scene text recognizable by optical character recognition (OCR), we developed a Bayesian super-resolution algorithm that uses a text-specific bimodal prior. We evaluated the effectiveness of the bimodal prior, compared with and in conjunction with a piecewise s...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 1188 - 1195 vol. 1 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | To increase the range of sizes of video scene text recognizable by optical character recognition (OCR), we developed a Bayesian super-resolution algorithm that uses a text-specific bimodal prior. We evaluated the effectiveness of the bimodal prior, compared with and in conjunction with a piecewise smoothness prior, visually and by measuring the accuracy of the OCR results on the variously super-resolved images. The bimodal prior improved the readability of 4- to 7-pixel-high scene text significantly better than bicubic interpolation, and increased the accuracy of OCR results better than the piecewise smoothness prior. |
---|---|
ISBN: | 0769523722 9780769523729 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2005.87 |