Facecut - a robust approach for facial feature segmentation
Segmentation of facial features is a key pre-processing step in enabling facial recognition, building of 3D facial models, expression analysis, and pose estimation. Recently, graph cuts based algorithms have been adapted to carry out this task but many of these methods require manual initialization...
Saved in:
Published in | 2012 19th IEEE International Conference on Image Processing pp. 1841 - 1844 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Segmentation of facial features is a key pre-processing step in enabling facial recognition, building of 3D facial models, expression analysis, and pose estimation. Recently, graph cuts based algorithms have been adapted to carry out this task but many of these methods require manual initialization of points in the foreground and background. In this paper, we propose a novel and fully automatic approach, named Face-Cut, to perform accurate facial feature segmentation. FaceCut combines the positive features of the Modified Active Shape Model (MASM) and GrowCut algorithms to ensure highly accurate and completely automatic segmentation of facial features. We demonstrate the effectiveness of FaceCut on images from two challenging databases. |
---|---|
ISBN: | 1467325341 9781467325349 |
ISSN: | 1522-4880 2381-8549 |
DOI: | 10.1109/ICIP.2012.6467241 |