DeepMVS: Learning Multi-view Stereopsis
We present DeepMVS, a deep convolutional neural network (ConvNet) for multi-view stereo reconstruction. Taking an arbitrary number of posed images as input, we first produce a set of plane-sweep volumes and use the proposed DeepMVS network to predict high-quality disparity maps. The key contribution...
Saved in:
Published in | 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp. 2821 - 2830 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present DeepMVS, a deep convolutional neural network (ConvNet) for multi-view stereo reconstruction. Taking an arbitrary number of posed images as input, we first produce a set of plane-sweep volumes and use the proposed DeepMVS network to predict high-quality disparity maps. The key contributions that enable these results are (1) supervised pretraining on a photorealistic synthetic dataset, (2) an effective method for aggregating information across a set of unordered images, and (3) integrating multi-layer feature activations from the pre-trained VGG-19 network. We validate the efficacy of DeepMVS using the ETH3D Benchmark. Our results show that DeepMVS compares favorably against state-of-the-art conventional MVS algorithms and other ConvNet based methods, particularly for near-textureless regions and thin structures. |
---|---|
ISSN: | 1063-6919 |
DOI: | 10.1109/CVPR.2018.00298 |