Simple online and realtime tracking with a deep association metric
Simple Online and Realtime Tracking (SORT) is a pragmatic approach to multiple object tracking with a focus on simple, effective algorithms. In this paper, we integrate appearance information to improve the performance of SORT. Due to this extension we are able to track objects through longer period...
Saved in:
Published in | 2017 IEEE International Conference on Image Processing (ICIP) pp. 3645 - 3649 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.09.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 2381-8549 |
DOI | 10.1109/ICIP.2017.8296962 |
Cover
Summary: | Simple Online and Realtime Tracking (SORT) is a pragmatic approach to multiple object tracking with a focus on simple, effective algorithms. In this paper, we integrate appearance information to improve the performance of SORT. Due to this extension we are able to track objects through longer periods of occlusions, effectively reducing the number of identity switches. In spirit of the original framework we place much of the computational complexity into an offline pre-training stage where we learn a deep association metric on a largescale person re-identification dataset. During online application, we establish measurement-to-track associations using nearest neighbor queries in visual appearance space. Experimental evaluation shows that our extensions reduce the number of identity switches by 45%, achieving overall competitive performance at high frame rates. |
---|---|
ISSN: | 2381-8549 |
DOI: | 10.1109/ICIP.2017.8296962 |