Maximum Sum-Rate Interference Alignment Algorithms for MIMO Channels
Alternating minimization algorithms are typically used to find interference alignment (IA) solutions for multiple-input multiple-output (MIMO) interference channels with more than K=3 users. For these scenarios many IA solutions exit, and the initial point determines which one is obtained upon conve...
Saved in:
Published in | 2010 IEEE Global Telecommunications Conference GLOBECOM 2010 pp. 1 - 6 |
---|---|
Main Authors | , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Alternating minimization algorithms are typically used to find interference alignment (IA) solutions for multiple-input multiple-output (MIMO) interference channels with more than K=3 users. For these scenarios many IA solutions exit, and the initial point determines which one is obtained upon convergence. In this paper, we propose a new iterative algorithm that aims at finding the IA solution that maximizes the average sum-rate. At each step of the alternating minimization algorithm, either the precoders or the decoders are moved along the direction given by the gradient of the sum-rate. Since IA solutions are defined by a set of subspaces, the gradient optimization is performed on the Grassmann manifold. The step size of the gradient ascent algorithm is annealed to zero over the iterations in such a way that during the last iterations only the interference leakage is being minimized and a perfect alignment solution is finally reached. Simulation examples are provided showing that the proposed algorithm obtains IA solutions with significant higher throughputs than the conventional IA algorithms. |
---|---|
ISBN: | 1424456363 9781424456369 |
ISSN: | 1930-529X |
DOI: | 10.1109/GLOCOM.2010.5683919 |