Detection and explanation of anomalous activities: representing activities as bags of event n-grams
We present a novel representation and method for detecting and explaining anomalous activities in a video stream. Drawing from natural language processing, we introduce a representation of activities as bags of event n-grams, where we analyze the global structural information of activities using the...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 1031 - 1038 vol. 1 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 1063-6919 |
DOI | 10.1109/CVPR.2005.127 |
Cover
Loading…
Summary: | We present a novel representation and method for detecting and explaining anomalous activities in a video stream. Drawing from natural language processing, we introduce a representation of activities as bags of event n-grams, where we analyze the global structural information of activities using their local event statistics. We demonstrate how maximal cliques in an undirected edge-weighted graph of activities, can be used in an unsupervised manner, to discover regular sub-classes of an activity class. Based on these discovered sub-classes, we formulate a definition of anomalous activities and present a way to detect them. Finally, we characterize each discovered sub-class in terms of its "most representative member" and present an information-theoretic method to explain the detected anomalies in a human-interpretable form. |
---|---|
ISBN: | 0769523722 9780769523729 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2005.127 |