On the use of phone log-likelihood ratios as features in spoken language recognition
This paper presents an alternative feature set to the traditional MFCC-SDC used in acoustic approaches to Spoken Language Recognition: the log-likelihood ratios of phone posterior probabilities, hereafter Phone Log-Likelihood Ratios (PLLR), produced by a phone recognizer. In this work, an iVector sy...
Saved in:
Published in | 2012 IEEE Spoken Language Technology Workshop (SLT) pp. 274 - 279 |
---|---|
Main Authors | , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.12.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper presents an alternative feature set to the traditional MFCC-SDC used in acoustic approaches to Spoken Language Recognition: the log-likelihood ratios of phone posterior probabilities, hereafter Phone Log-Likelihood Ratios (PLLR), produced by a phone recognizer. In this work, an iVector system trained on this set of features (plus dynamic coefficients) is evaluated and compared to (1) an acoustic iVector system (trained on the MFCC-SDC feature set) and (2) a phonotactic (Phone-lattice-SVM) system, using two different benchmarks: the NIST 2007 and 2009 LRE datasets. iVector systems trained on PLLR features proved to be competitive, reaching or even outperforming the MFCC-SDC-based iVector and the phonotactic systems. The fusion of the proposed approach with the acoustic and phonotactic systems provided even more significant improvements, outperforming state-of-the-art systems on both benchmarks. |
---|---|
ISBN: | 9781467351256 1467351253 |
DOI: | 10.1109/SLT.2012.6424235 |