Adaptive mobile charging stations for multi-robot systems
We consider systems of mobile robots that execute a transportation task and periodically recharge from a docking station. The location of the docking station has a considerable effect on task performance. In nonstationary tasks the optimal dock location may vary over the length of the task. In multi...
Saved in:
Published in | 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems pp. 1363 - 1368 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.10.2009
|
Subjects | |
Online Access | Get full text |
ISBN | 9781424438037 1424438039 |
ISSN | 2153-0858 |
DOI | 10.1109/IROS.2009.5354816 |
Cover
Loading…
Summary: | We consider systems of mobile robots that execute a transportation task and periodically recharge from a docking station. The location of the docking station has a considerable effect on task performance. In nonstationary tasks the optimal dock location may vary over the length of the task. In multiple-robot systems, spatial interference between charging and working robots can make it difficult to find an optimal dock location, even in static tasks. We propose a new approach whereby the dock is itself an autonomous robot that attempts to incrementally improve its location. We show simulation results from a simple local controller that adapts to nonstationary tasks and spatial interference, and thus improves overall task performance compared to a static dock. |
---|---|
ISBN: | 9781424438037 1424438039 |
ISSN: | 2153-0858 |
DOI: | 10.1109/IROS.2009.5354816 |