Dense photometric stereo using tensorial belief propagation
We address the normal reconstruction problem by photometric stereo using a uniform and dense set of photometric images captured at fixed viewpoint. Our method is robust to spurious noises caused by highlight and shadows and non-Lambertian reflections. To simultaneously recover normal orientations an...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 132 - 139 vol. 1 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We address the normal reconstruction problem by photometric stereo using a uniform and dense set of photometric images captured at fixed viewpoint. Our method is robust to spurious noises caused by highlight and shadows and non-Lambertian reflections. To simultaneously recover normal orientations and preserve discontinuities, we model the dense photometric stereo problem into two coupled Markov random fields (MRFs): a smooth field for normal orientations, and a spatial line process for normal orientation discontinuities. We propose a very fast tensorial belief propagation method to approximate the maximum a posteriori (MAP) solution of the Markov network. Our tensor-based message passing scheme not only improves the normal orientation estimation from one of discrete to continuous, but also reduces storage and running time drastically. A convenient handheld device was built to collect a scattered set of photometric samples, from which a dense and uniform set on the lighting direction sphere is obtained. We present very encouraging results on a wide range of difficult objects to show the efficacy of our approach. |
---|---|
AbstractList | We address the normal reconstruction problem by photometric stereo using a uniform and dense set of photometric images captured at fixed viewpoint. Our method is robust to spurious noises caused by highlight and shadows and non-Lambertian reflections. To simultaneously recover normal orientations and preserve discontinuities, we model the dense photometric stereo problem into two coupled Markov random fields (MRFs): a smooth field for normal orientations, and a spatial line process for normal orientation discontinuities. We propose a very fast tensorial belief propagation method to approximate the maximum a posteriori (MAP) solution of the Markov network. Our tensor-based message passing scheme not only improves the normal orientation estimation from one of discrete to continuous, but also reduces storage and running time drastically. A convenient handheld device was built to collect a scattered set of photometric samples, from which a dense and uniform set on the lighting direction sphere is obtained. We present very encouraging results on a wide range of difficult objects to show the efficacy of our approach. |
Author | Chi-Keung Tang Tien-Tsin Wong Kam-Lun Tang |
Author_xml | – sequence: 1 surname: Kam-Lun Tang fullname: Kam-Lun Tang organization: Hong Kong Univ. of Sci. & Technol., Hong Kong, China – sequence: 2 surname: Chi-Keung Tang fullname: Chi-Keung Tang organization: Hong Kong Univ. of Sci. & Technol., Hong Kong, China – sequence: 3 surname: Tien-Tsin Wong fullname: Tien-Tsin Wong |
BookMark | eNpNjLtOwzAUQC0oEm3pyMSSH0jxvX7FYkLhKVUCIWCt7OS6GKVx5ISBv6cSDJzlDEc6CzbrU0-MnQNfA3B7Wb8_v6yRc7UGlEdsDlyLUluwx2zBjbYKhUGc_QunbDWOn_yAsKKSOGdXN9SPVAwfaUp7mnJsinGiTKn4GmO_K6ZDTjm6rvDURQrFkNPgdm6KqT9jJ8F1I63-vGRvd7ev9UO5ebp_rK83ZQSjphJEUF5QhQ2BcCHY1hNVwbWNClZJbbWvAhgHBiX3LSAErKQXgqRUiCiW7OL3G4loO-S4d_l7C1IbVFb8ANXuS1k |
ContentType | Conference Proceeding |
DBID | 6IE 6IH CBEJK RIE RIO |
DOI | 10.1109/CVPR.2005.124 |
DatabaseName | IEEE Electronic Library (IEL) Conference Proceedings IEEE Proceedings Order Plan (POP) 1998-present by volume IEEE Xplore All Conference Proceedings IEEE Electronic Library (IEL) IEEE Proceedings Order Plans (POP) 1998-present |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Computer Science |
EISSN | 1063-6919 |
EndPage | 139 vol. 1 |
ExternalDocumentID | 1467259 |
Genre | orig-research |
GroupedDBID | 23M 29F 29O 6IE 6IH 6IK ABDPE ACGFS ALMA_UNASSIGNED_HOLDINGS CBEJK IPLJI M43 RIE RIO RNS |
ID | FETCH-LOGICAL-i175t-13f5b3e82ce13aff9dbee8fadc5f954696b8f17a17240bd121f284b33e4452223 |
IEDL.DBID | RIE |
ISBN | 0769523722 9780769523729 |
ISSN | 1063-6919 |
IngestDate | Wed Aug 27 02:18:15 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-i175t-13f5b3e82ce13aff9dbee8fadc5f954696b8f17a17240bd121f284b33e4452223 |
ParticipantIDs | ieee_primary_1467259 |
PublicationCentury | 2000 |
PublicationDate | 20050000 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 20050000 |
PublicationDecade | 2000 |
PublicationTitle | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) |
PublicationTitleAbbrev | CVPR |
PublicationYear | 2005 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
SSID | ssj0000393842 ssj0023720 ssj0003211698 |
Score | 1.704185 |
Snippet | We address the normal reconstruction problem by photometric stereo using a uniform and dense set of photometric images captured at fixed viewpoint. Our method... |
SourceID | ieee |
SourceType | Publisher |
StartPage | 132 |
SubjectTerms | Acoustic reflection Belief propagation Handheld computers Image reconstruction Markov random fields Message passing Noise robustness Optical reflection Photometry Stereo image processing |
Title | Dense photometric stereo using tensorial belief propagation |
URI | https://ieeexplore.ieee.org/document/1467259 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GTpwGbIi3cuBIt7Vp00YcB9OENDQhhnabmsYBhFgn6C78euz0MYQ4cKkaR6rSNKn9OfZnxi4RI2ul4sgzgdElQNESL0OD2lLEMBSOZ3t6Lyfz8G4RLVrsqsmFAQAXfAZ9unVn-SbPNuQqG9CuRnN9h-0gcCtztRp_CuWYJhXMo7ZAZCNVc6IQUDUWd_IphSeVr0oIryLqCComnrqttmScg9HT7KF0vfiUFf-jBIvTQOMOm9ZjLwNP3vqbQvezr1-0jv99uT3W2-b68VmjxfZZC1YHrFMZp7za-p8oqus_1LIuu75BDAx8_ZIX-TtV5so40S5Azima_plTcHxOC5xrwKdZjkPH_5dbCz02H98-jiZeVYzBe0ULg0rW20gLSIIMfJFaq4wGSGxqssiqCEG21In14xQ_cTjUxg98i5pPCwEhkbYH4pC1V_kKjhgPsduqRMoY7UVrsgStwET7QZYisteRPGZdmp7luuTbWFYzc_K3-JTtOjpV5xY5Y-3iYwPnaCgU-sKtkG_UR7Os |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkpY5jJxZjoSrQVhVqUbcqjm1AiKaCdOHXc3YeRYiBJYrPUuQ4du6-8913CF0ARpZChMxTvpI5QJEcLh0F2pKGukMdz_ZwxPvT4H7GZjV0WeXCaK1d8Jlu21t3lq_SZGVdZVd2V4O5voE2Qe8zkmdrVR4Vm2UaFUDPtilgGy6qMwXf1mNxZ5-celwQkYN4wWyHX3DxlG2xpuO86j6NH3PnC7F58T-KsDgd1GugYTn6PPTkrb3KZDv5-kXs-N_X20GtdbYfHld6bBfV9GIPNQrzFBeb_xNEZQWIUtZE1zeAgjVevqRZ-m5rcyXYEi_oFNt4-mdsw-NTu8Sx1PA0g2Ho8Adzq6GFpr3bSbfvFeUYvFewMWzResMk1ZGfaEJjY4SSWkcmVgkzggHM5jIyJIzhIwcdqYhPDOg-SakOLG27T_dRfZEu9AHCAXQbEXEegsVoVBKBHRhJ4icxYHvJ-CFq2umZL3PGjXkxM0d_i8_RVn8yHMwHd6OHY7TtyFWdk-QE1bOPlT4FsyGTZ261fANrK7b1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Dense+photometric+stereo+using+tensorial+belief+propagation&rft.au=Kam-Lun+Tang&rft.au=Chi-Keung+Tang&rft.au=Tien-Tsin+Wong&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=132&rft.epage=139+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.124&rft.externalDocID=1467259 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon |