Dense photometric stereo using tensorial belief propagation

We address the normal reconstruction problem by photometric stereo using a uniform and dense set of photometric images captured at fixed viewpoint. Our method is robust to spurious noises caused by highlight and shadows and non-Lambertian reflections. To simultaneously recover normal orientations an...

Full description

Saved in:
Bibliographic Details
Published in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 132 - 139 vol. 1
Main Authors Kam-Lun Tang, Chi-Keung Tang, Tien-Tsin Wong
Format Conference Proceeding
LanguageEnglish
Published IEEE 2005
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We address the normal reconstruction problem by photometric stereo using a uniform and dense set of photometric images captured at fixed viewpoint. Our method is robust to spurious noises caused by highlight and shadows and non-Lambertian reflections. To simultaneously recover normal orientations and preserve discontinuities, we model the dense photometric stereo problem into two coupled Markov random fields (MRFs): a smooth field for normal orientations, and a spatial line process for normal orientation discontinuities. We propose a very fast tensorial belief propagation method to approximate the maximum a posteriori (MAP) solution of the Markov network. Our tensor-based message passing scheme not only improves the normal orientation estimation from one of discrete to continuous, but also reduces storage and running time drastically. A convenient handheld device was built to collect a scattered set of photometric samples, from which a dense and uniform set on the lighting direction sphere is obtained. We present very encouraging results on a wide range of difficult objects to show the efficacy of our approach.
AbstractList We address the normal reconstruction problem by photometric stereo using a uniform and dense set of photometric images captured at fixed viewpoint. Our method is robust to spurious noises caused by highlight and shadows and non-Lambertian reflections. To simultaneously recover normal orientations and preserve discontinuities, we model the dense photometric stereo problem into two coupled Markov random fields (MRFs): a smooth field for normal orientations, and a spatial line process for normal orientation discontinuities. We propose a very fast tensorial belief propagation method to approximate the maximum a posteriori (MAP) solution of the Markov network. Our tensor-based message passing scheme not only improves the normal orientation estimation from one of discrete to continuous, but also reduces storage and running time drastically. A convenient handheld device was built to collect a scattered set of photometric samples, from which a dense and uniform set on the lighting direction sphere is obtained. We present very encouraging results on a wide range of difficult objects to show the efficacy of our approach.
Author Chi-Keung Tang
Tien-Tsin Wong
Kam-Lun Tang
Author_xml – sequence: 1
  surname: Kam-Lun Tang
  fullname: Kam-Lun Tang
  organization: Hong Kong Univ. of Sci. & Technol., Hong Kong, China
– sequence: 2
  surname: Chi-Keung Tang
  fullname: Chi-Keung Tang
  organization: Hong Kong Univ. of Sci. & Technol., Hong Kong, China
– sequence: 3
  surname: Tien-Tsin Wong
  fullname: Tien-Tsin Wong
BookMark eNpNjLtOwzAUQC0oEm3pyMSSH0jxvX7FYkLhKVUCIWCt7OS6GKVx5ISBv6cSDJzlDEc6CzbrU0-MnQNfA3B7Wb8_v6yRc7UGlEdsDlyLUluwx2zBjbYKhUGc_QunbDWOn_yAsKKSOGdXN9SPVAwfaUp7mnJsinGiTKn4GmO_K6ZDTjm6rvDURQrFkNPgdm6KqT9jJ8F1I63-vGRvd7ev9UO5ebp_rK83ZQSjphJEUF5QhQ2BcCHY1hNVwbWNClZJbbWvAhgHBiX3LSAErKQXgqRUiCiW7OL3G4loO-S4d_l7C1IbVFb8ANXuS1k
ContentType Conference Proceeding
DBID 6IE
6IH
CBEJK
RIE
RIO
DOI 10.1109/CVPR.2005.124
DatabaseName IEEE Electronic Library (IEL) Conference Proceedings
IEEE Proceedings Order Plan (POP) 1998-present by volume
IEEE Xplore All Conference Proceedings
IEEE Electronic Library (IEL)
IEEE Proceedings Order Plans (POP) 1998-present
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
EISSN 1063-6919
EndPage 139 vol. 1
ExternalDocumentID 1467259
Genre orig-research
GroupedDBID 23M
29F
29O
6IE
6IH
6IK
ABDPE
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CBEJK
IPLJI
M43
RIE
RIO
RNS
ID FETCH-LOGICAL-i175t-13f5b3e82ce13aff9dbee8fadc5f954696b8f17a17240bd121f284b33e4452223
IEDL.DBID RIE
ISBN 0769523722
9780769523729
ISSN 1063-6919
IngestDate Wed Aug 27 02:18:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-i175t-13f5b3e82ce13aff9dbee8fadc5f954696b8f17a17240bd121f284b33e4452223
ParticipantIDs ieee_primary_1467259
PublicationCentury 2000
PublicationDate 20050000
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 20050000
PublicationDecade 2000
PublicationTitle 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05)
PublicationTitleAbbrev CVPR
PublicationYear 2005
Publisher IEEE
Publisher_xml – name: IEEE
SSID ssj0000393842
ssj0023720
ssj0003211698
Score 1.704185
Snippet We address the normal reconstruction problem by photometric stereo using a uniform and dense set of photometric images captured at fixed viewpoint. Our method...
SourceID ieee
SourceType Publisher
StartPage 132
SubjectTerms Acoustic reflection
Belief propagation
Handheld computers
Image reconstruction
Markov random fields
Message passing
Noise robustness
Optical reflection
Photometry
Stereo image processing
Title Dense photometric stereo using tensorial belief propagation
URI https://ieeexplore.ieee.org/document/1467259
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI7GTpwGbIi3cuBIt7Vp00YcB9OENDQhhnabmsYBhFgn6C78euz0MYQ4cKkaR6rSNKn9OfZnxi4RI2ul4sgzgdElQNESL0OD2lLEMBSOZ3t6Lyfz8G4RLVrsqsmFAQAXfAZ9unVn-SbPNuQqG9CuRnN9h-0gcCtztRp_CuWYJhXMo7ZAZCNVc6IQUDUWd_IphSeVr0oIryLqCComnrqttmScg9HT7KF0vfiUFf-jBIvTQOMOm9ZjLwNP3vqbQvezr1-0jv99uT3W2-b68VmjxfZZC1YHrFMZp7za-p8oqus_1LIuu75BDAx8_ZIX-TtV5so40S5Azima_plTcHxOC5xrwKdZjkPH_5dbCz02H98-jiZeVYzBe0ULg0rW20gLSIIMfJFaq4wGSGxqssiqCEG21In14xQ_cTjUxg98i5pPCwEhkbYH4pC1V_kKjhgPsduqRMoY7UVrsgStwET7QZYisteRPGZdmp7luuTbWFYzc_K3-JTtOjpV5xY5Y-3iYwPnaCgU-sKtkG_UR7Os
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELZKGWAq0CLeeGAkpY5jJxZjoSrQVhVqUbcqjm1AiKaCdOHXc3YeRYiBJYrPUuQ4du6-8913CF0ARpZChMxTvpI5QJEcLh0F2pKGukMdz_ZwxPvT4H7GZjV0WeXCaK1d8Jlu21t3lq_SZGVdZVd2V4O5voE2Qe8zkmdrVR4Vm2UaFUDPtilgGy6qMwXf1mNxZ5-celwQkYN4wWyHX3DxlG2xpuO86j6NH3PnC7F58T-KsDgd1GugYTn6PPTkrb3KZDv5-kXs-N_X20GtdbYfHld6bBfV9GIPNQrzFBeb_xNEZQWIUtZE1zeAgjVevqRZ-m5rcyXYEi_oFNt4-mdsw-NTu8Sx1PA0g2Ho8Adzq6GFpr3bSbfvFeUYvFewMWzResMk1ZGfaEJjY4SSWkcmVgkzggHM5jIyJIzhIwcdqYhPDOg-SakOLG27T_dRfZEu9AHCAXQbEXEegsVoVBKBHRhJ4icxYHvJ-CFq2umZL3PGjXkxM0d_i8_RVn8yHMwHd6OHY7TtyFWdk-QE1bOPlT4FsyGTZ261fANrK7b1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=proceeding&rft.title=2005+IEEE+Computer+Society+Conference+on+Computer+Vision+and+Pattern+Recognition+%28CVPR%2705%29&rft.atitle=Dense+photometric+stereo+using+tensorial+belief+propagation&rft.au=Kam-Lun+Tang&rft.au=Chi-Keung+Tang&rft.au=Tien-Tsin+Wong&rft.date=2005-01-01&rft.pub=IEEE&rft.isbn=9780769523729&rft.issn=1063-6919&rft.eissn=1063-6919&rft.volume=1&rft.spage=132&rft.epage=139+vol.+1&rft_id=info:doi/10.1109%2FCVPR.2005.124&rft.externalDocID=1467259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6919&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6919&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6919&client=summon