Dense photometric stereo using tensorial belief propagation
We address the normal reconstruction problem by photometric stereo using a uniform and dense set of photometric images captured at fixed viewpoint. Our method is robust to spurious noises caused by highlight and shadows and non-Lambertian reflections. To simultaneously recover normal orientations an...
Saved in:
Published in | 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) Vol. 1; pp. 132 - 139 vol. 1 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We address the normal reconstruction problem by photometric stereo using a uniform and dense set of photometric images captured at fixed viewpoint. Our method is robust to spurious noises caused by highlight and shadows and non-Lambertian reflections. To simultaneously recover normal orientations and preserve discontinuities, we model the dense photometric stereo problem into two coupled Markov random fields (MRFs): a smooth field for normal orientations, and a spatial line process for normal orientation discontinuities. We propose a very fast tensorial belief propagation method to approximate the maximum a posteriori (MAP) solution of the Markov network. Our tensor-based message passing scheme not only improves the normal orientation estimation from one of discrete to continuous, but also reduces storage and running time drastically. A convenient handheld device was built to collect a scattered set of photometric samples, from which a dense and uniform set on the lighting direction sphere is obtained. We present very encouraging results on a wide range of difficult objects to show the efficacy of our approach. |
---|---|
ISBN: | 0769523722 9780769523729 |
ISSN: | 1063-6919 1063-6919 |
DOI: | 10.1109/CVPR.2005.124 |