The LOCATA Challenge Data Corpus for Acoustic Source Localization and Tracking

Algorithms for acoustic source localization and tracking are essential for a wide range of applications such as personal assistants, smart homes, tele-conferencing systems, hearing aids, or autonomous systems. Numerous algorithms have been proposed for this purpose which, however, are not evaluated...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop pp. 410 - 414
Main Authors Lollmann, Heinrich W., Evers, Christine, Schmidt, Alexander, Mellmann, Heinrich, Barfuss, Hendrik, Naylor, Patrick A., Kellermann, Walter
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.07.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Algorithms for acoustic source localization and tracking are essential for a wide range of applications such as personal assistants, smart homes, tele-conferencing systems, hearing aids, or autonomous systems. Numerous algorithms have been proposed for this purpose which, however, are not evaluated and compared against each other by using a common database so far. The IEEE-AASP Challenge on sound source localization and tracking (LOCATA) provides a novel, comprehensive data corpus for the objective benchmarking of state-of-the-art algorithms on sound source localization and tracking. The data corpus comprises six tasks ranging from the localization of a single static sound source with a static microphone array to the tracking of multiple moving speakers with a moving microphone array. It contains real-world multichannel audio recordings, obtained by hearing aids, microphones integrated in a robot head, a planar and a spherical microphone array in an enclosed acoustic environment, as well as positional information about the involved arrays and sound sources represented by moving human talkers or static loudspeakers.
ISSN:2151-870X
DOI:10.1109/SAM.2018.8448644