Bayesian Semiparametric Longitudinal Data Modeling Using NI Densities
Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 8.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1758.7.1 Appendix A: Densities of some specific NI distri...
Saved in:
Published in | Current Trends in Bayesian Methodology with Applications pp. 197 - 220 |
---|---|
Format | Book Chapter |
Language | English |
Published |
United Kingdom
Chapman and Hall/CRC
2015
CRC Press LLC |
Subjects | |
Online Access | Get full text |
ISBN | 1482235110 9781482235111 |
DOI | 10.1201/b18502-15 |
Cover
Summary: | Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
8.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1758.7.1 Appendix A: Densities of some specific NI distributions 175
8.7.2 Appendix B: Conditional posterior distributions . . . . . . . 176
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177in BayesianLongitudinal data abounds in bio-statistical research, leading to exploration
of a wide variety of statistical models with varying complexity. Linear mixed
effects (LME) models [see e.g. 18, 31, 32] are routinely used to analyze these
data, allowing researchers to capture correlations between responses that exhibit multivariate, clustered, multilevel, spatially-referenced and various other
data structures. The LME model for continuous responses assumes normal
distributions for the between-subject random effects and the within-subject
random errors. However, this may lack robustness in parameter estimation
under departures from normality (namely, heavy tails) and/or outliers [24].
To deal with this issue, some proposals in the literature consider replacing
the normality assumption with a more flexible class of distributions. For example, [24] proposed a multivariate Student-t LME model in the presence of
outliers. [20] and [21] developed some additional tools for the t-LME model
from a Bayesian perspective. [28] advocated the use of a subclass of elliptical
distributions, called normal/independent (NI) distributions [22], and adopted
a Bayesian framework to carry out posterior analysis for heavy-tailed LME
(NI-LME) models. [1, 2] proposed extensions of the normal LME to deal with
both asymmetry and outliers, with the LME as a particular case. |
---|---|
ISBN: | 1482235110 9781482235111 |
DOI: | 10.1201/b18502-15 |