Hamiltonian Monte Carlo for Hierarchical Models

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Appendix: Stan Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Funnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....

Full description

Saved in:
Bibliographic Details
Published inCurrent Trends in Bayesian Methodology with Applications pp. 119 - 142
Format Book Chapter
LanguageEnglish
Published United Kingdom Chapman and Hall/CRC 2015
CRC Press LLC
Subjects
Online AccessGet full text
ISBN1482235110
9781482235111
DOI10.1201/b18502-11

Cover

More Information
Summary:Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Appendix: Stan Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Funnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 Generate One-Way Normal Pseudo-data . . . . . . . . . . . . . . . . . . . . . . . . 98 One-Way Normal (Centered) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 One-Way Normal (Non-Centered) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Many of the most exciting problems in applied statistics involve intricate, typically high-dimensional, models and, at least relative to the model complexity, sparse data. With the data alone unable to identify the model, valid inference in these circumstances requires significant prior information. Such information, however, is not limited to the choice of an explicit prior distribution: it can be encoded in the construction of the model itself.
ISBN:1482235110
9781482235111
DOI:10.1201/b18502-11