Hamiltonian Monte Carlo for Hierarchical Models
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 4.6 Appendix: Stan Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Funnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ....
Saved in:
Published in | Current Trends in Bayesian Methodology with Applications pp. 119 - 142 |
---|---|
Format | Book Chapter |
Language | English |
Published |
United Kingdom
Chapman and Hall/CRC
2015
CRC Press LLC |
Subjects | |
Online Access | Get full text |
ISBN | 1482235110 9781482235111 |
DOI | 10.1201/b18502-11 |
Cover
Summary: | Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.6 Appendix: Stan Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Funnel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Generate One-Way Normal Pseudo-data . . . . . . . . . . . . . . . . . . . . . . . . 98
One-Way Normal (Centered) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
One-Way Normal (Non-Centered) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Many of the most exciting problems in applied statistics involve intricate, typically high-dimensional, models and, at least relative to the model complexity,
sparse data. With the data alone unable to identify the model, valid inference
in these circumstances requires significant prior information. Such information, however, is not limited to the choice of an explicit prior distribution: it
can be encoded in the construction of the model itself. |
---|---|
ISBN: | 1482235110 9781482235111 |
DOI: | 10.1201/b18502-11 |