A High Voltage Multi-Purpose On-the-fly Reconfigurable Half-Bridge Gate Driver for GaN HEMTs in 0.18-μm HV SOI CMOS Technology
Intended to be the core design of a configurable and flexible high voltage power system for aerospace applications, the gate driver in this work is capable of driving a wide range of GaN devices of different sizes, in half-bridge configuration, with configurable driving strength and dead-time. These...
Saved in:
Published in | 2020 18th IEEE International New Circuits and Systems Conference (NEWCAS) pp. 178 - 181 |
---|---|
Main Authors | , , , , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Intended to be the core design of a configurable and flexible high voltage power system for aerospace applications, the gate driver in this work is capable of driving a wide range of GaN devices of different sizes, in half-bridge configuration, with configurable driving strength and dead-time. These features eliminate the need for discrete gate resistors and allow for higher density designs, such as SiP integration. The on-the-fly reconfigurability enables local efficiency optimization and EMI reduction, which is essential in safety-critical applications. The proposed IC was fabricated using XFAB's 0.18 \mu \mathrm{m} HV SOI CMOS process (xt018). Measurement results show that the chip can drive targeted GaN HEMTs from smallest to largest size at the desired turn-on and turn-off speeds, as fast as 1.46/1.18 ns of rise/fall-time. The measured dead-time is from 4.5 ns to 58 ns with an input voltage up to 86 V. The parameters can be reconfigured on-the-fly at a pulse width modulation frequency up to 20 MHz. |
---|---|
DOI: | 10.1109/NEWCAS49341.2020.9159781 |