Sensitivity of nanostructured Al-doped ZnO-based CH4 sensor fabricated using sol-gel method

The atomic force microscopy (AFM) morphologies and electrical properties of the nanostructured Aluminium (Al) doped Zinc Oxide (ZnO) thin films prepared at various thicknesses were investigated. The films were prepared by sol-gel spin-coating method to fabricate ZnO-based sensors. The sensitivity up...

Full description

Saved in:
Bibliographic Details
Published in2014 2nd International Conference on Electrical, Electronics and System Engineering (ICEESE) pp. 24 - 27
Main Authors Shafura, A. K., Sin, N. D. Md, Azhar, N. E. A., Uzer, M., Mamat, M. H., Alrokayan, Salman A. H., Khan, Haseeb A., Rusop, M.
Format Conference Proceeding
LanguageEnglish
Published IEEE 01.12.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The atomic force microscopy (AFM) morphologies and electrical properties of the nanostructured Aluminium (Al) doped Zinc Oxide (ZnO) thin films prepared at various thicknesses were investigated. The films were prepared by sol-gel spin-coating method to fabricate ZnO-based sensors. The sensitivity upon exposure to methane (CH 4 ) gas at room temperature was investigated. The results show that the lowest resistivity of 0.752 × 10 6 Ω-cm was obtained for the ZnO nanostructures prepared at thickness of 170 nm. It also display highest sensitivity value which is 30%.
DOI:10.1109/ICEESE.2014.7154614