Fast scale invariant feature detection and matching on programmable graphics hardware
Ever since the introduction of freely programmable hardware components into modern graphics hardware, graphics processing units (GPUs) have become increasingly popular for general purpose computations. Especially when applied to computer vision algorithms where a Single set of Instructions has to be...
Saved in:
Published in | 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops pp. 1 - 8 |
---|---|
Main Authors | , |
Format | Conference Proceeding |
Language | English Japanese |
Published |
IEEE
01.06.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Ever since the introduction of freely programmable hardware components into modern graphics hardware, graphics processing units (GPUs) have become increasingly popular for general purpose computations. Especially when applied to computer vision algorithms where a Single set of Instructions has to be executed on Multiple Data (SIMD), GPU-based algorithms can provide a major increase in processing speed compared to their CPU counterparts. This paper presents methods that take full advantage of modern graphics card hardware for real-time scale invariant feature detection and matching. The focus lies on the extraction of feature locations and the generation of feature descriptors from natural images. The generation of these feature-vectors is based on the Speeded Up Robust Features (SURF) method [1] due to its high stability against rotation, scale and changes in lighting condition of the processed images. With the presented methods feature detection and matching can be performed at framerates exceeding 100 frames per second for 640 times 480 images. The remaining time can then be spent on fast matching against large feature databases on the GPU while the CPU can be used for other tasks. |
---|---|
ISBN: | 9781424423392 1424423392 |
ISSN: | 2160-7508 |
DOI: | 10.1109/CVPRW.2008.4563087 |