Preparation and fluorescence properties of SiO2-coated CsPbBrI2 perovskite nanocrystals
All-inorganic perovskite nanocrystals CsPbX3 (X=Cl, Br, I) have garnered significant interest due to their promising applications and have become a leading research subject in the field of optoelectronics. The weak stability of CsPbBrI2 perovskite nanocrystals has hindered their development, however...
Saved in:
Published in | Journal of physics. Conference series Vol. 2578; no. 1; pp. 012014 - 12018 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bristol
IOP Publishing
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | All-inorganic perovskite nanocrystals CsPbX3 (X=Cl, Br, I) have garnered significant interest due to their promising applications and have become a leading research subject in the field of optoelectronics. The weak stability of CsPbBrI2 perovskite nanocrystals has hindered their development, however, silica coating can effectively solve this problem. The (3-aminopropyl) triethoxysilane was used as a raw material for silica synthesis to form core-shell structured CsPbBrI2@SiO2 perovskite nanocrystals to obtain enhanced optoelectronic properties. This article reveals the narrow absorption and emission peaks, small half-height widths, 14.6 ns fluorescence lifetimes, and 106.2 meV exciton binding energies of CsPbBrI2@SiO2 perovskite nanocrystals. The results show that the core-shell structured CsPbBrI2@SiO2 perovskite nanocrystals prepared by this method have excellent fluorescence spectral properties and hold significant promise for future applications in optoelectronic devices. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1742-6588 1742-6596 |
DOI: | 10.1088/1742-6596/2578/1/012014 |