Exploring Cortical Responses to Blood Flow Restriction through Deep Learning

Blood flow restriction (BFR) training, which combines low-intensity resistance exercises with restricted blood flow, is effective in promoting muscle hypertrophy and strength. However, its impact on cortical activity remains largely unexplored, presenting an opportunity to investigate neural mechani...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Rehabilitation Robotics Vol. 2025; pp. 546 - 552
Main Authors Koellner, Jonas, Wimpff, Martin, Gizzi, Leonardo, Vujaklija, Ivan, Yang, Bin
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Blood flow restriction (BFR) training, which combines low-intensity resistance exercises with restricted blood flow, is effective in promoting muscle hypertrophy and strength. However, its impact on cortical activity remains largely unexplored, presenting an opportunity to investigate neural mechanisms using brain-computer interfaces (BCIs). Deep learning (DL)-based BCIs, with their large capacity for decoding complex brain signals, offer a promising avenue for such exploration. This study utilized magnetoencephalography (MEG) to analyze cortical responses in six subjects across three conditions-before, during, and after BFR. After preprocessing steps, such as data standardization and Euclidean-space alignment to optimize performance, the BaseNet architecture was utilized to classify the data. The models were tested using within-subject, cross-subject, and cross-time data splits. The results revealed classification accuracy well above 90% for individual subjects, indicating that cortical responses to BFR are detectable on a personal level. However, cross-subject models achieved only chance-level accuracy (33%), highlighting significant variability between individuals. Cross-time models showed better performance, with accuracy exceeding 50%. These findings suggest that while BFR elicits distinct cortical activity patterns, these responses are highly individualized, presenting challenges for generalization.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1945-7901
1945-7901
DOI:10.1109/ICORR66766.2025.11063023