Reciprocal Learning of Intent Inferral with Augmented Visual Feedback for Stroke

Intent inferral, the process by which a robotic device predicts a user's intent from biosignals, offers an effective and intuitive way to control wearable robots. Classical intent inferral methods treat biosignal inputs as unidirectional ground truths for training machine learning models, where...

Full description

Saved in:
Bibliographic Details
Published inIEEE International Conference on Rehabilitation Robotics Vol. 2025; pp. 1512 - 1517
Main Authors Xu, Jingxi, Chen, Ava, Winterbottom, Lauren, Palacios, Joaquin, Chivukula, Preethika, Nilsen, Dawn M., Stein, Joel, Ciocarlie, Matei
Format Conference Proceeding Journal Article
LanguageEnglish
Published United States IEEE 01.05.2025
Subjects
Online AccessGet full text
ISSN1945-7901
1945-7901
DOI10.1109/ICORR66766.2025.11062977

Cover

More Information
Summary:Intent inferral, the process by which a robotic device predicts a user's intent from biosignals, offers an effective and intuitive way to control wearable robots. Classical intent inferral methods treat biosignal inputs as unidirectional ground truths for training machine learning models, where the internal state of the model is not directly observable by the user. In this work, we propose reciprocal learning, a bidirectional paradigm that facilitates human adaptation to an intent inferral classifier. Our paradigm consists of iterative, interwoven stages that alternate between updating machine learning models and guiding human adaptation with the use of augmented visual feedback. We demonstrate this paradigm in the context of controlling a robotic hand orthosis for stroke, where the device predicts open, close, and relax intents from electromyographic (EMG) signals and provides appropriate assistance. We use LED progress-bar displays to communicate to the user the predicted probabilities for open and close intents by the classifier. Our experiments with stroke subjects show reciprocal learning improving performance in a subset of subjects (two out of five) without negatively impacting performance on the others. We hypothesize that, during reciprocal learning, subjects can learn to reproduce more distinguishable muscle activation patterns and generate more separable biosignals.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1945-7901
1945-7901
DOI:10.1109/ICORR66766.2025.11062977